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WebRTC For The Curious
Introduction
WebRTC For The Curious is an open-source book created by WebRTC imple-
menters to share their hard-earned knowledge with the world. It’s written for
those who are always looking for more and don’t settle for abstraction.

Key features

• Focus on protocols and APIs, not specific software.
• Summarizes RFCs and collects undocumented knowledge.
• Vendor-agnostic approach.
• Not a tutorial - contains minimal code.

WebRTC is a powerful technology, but it can be challenging to use. This book
aims to provide a comprehensive, unbiased resource for understanding WebRTC.

Who this book is for
• Developers new to WebRTC, wanting to learn more.
• Current WebRTC developers seeking deeper understanding beyond APIs.
• Established developers needing debugging help.
• WebRTC implementers requiring clarification on specific parts.
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Book structure
Designed for multiple readings

Each chapter is self-contained, allowing you to start anywhere in the book
without getting lost.

Chapter format

Each chapter answers a single question with three levels of information: 1. What
needs to be solved? 2. How do we solve it? (Including technical details) 3.
Where to learn more.

No prior knowledge required

You can begin learning at any point in the book. We also provide resources for
further study on individual topics. Other books cover individual topics in much
greater depth. This book aims to teach you the entire system, at the cost of
expert level details.

Availability and License
• Available on GitHub and WebRTCforTheCurious.com
• Downloadable as ePub and PDF
• Licensed under CC0 (no attribution required)

Privacy Commitment

• Written by individuals, for individuals.
• Vendor-agnostic with no conflicts of interest.
• No analytics or tracking on the website.

Get involved!
We welcome your contributions! Visit our GitHub page to: - Open issues for
questions. - Suggest improvements. - Contribute to the ongoing development of
this book.

License
This book is available under the CC0 license. The authors have waived all their
copyright and related rights in their works to the fullest extent allowed by law.
You may use this work however you want and no attribution is required.
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What, Why and How
What is WebRTC?
WebRTC, short for Web Real-Time Communication, is both an API and a
Protocol. The WebRTC protocol is a set of rules for two WebRTC agents to
negotiate bi-directional secure real-time communication. The WebRTC API then
allows developers to use the WebRTC protocol. The WebRTC API is specified
only for JavaScript.

A similar relationship would be the one between HTTP and the Fetch API.
WebRTC the protocol would be HTTP, and WebRTC the API would be the
Fetch API.

The WebRTC protocol is available in other APIs and languages besides JavaScript.
You can find servers and domain-specific tools as well for WebRTC. All of these
implementations use the WebRTC protocol so that they can interact with each
other.

The WebRTC protocol is maintained in the IETF in the rtcweb working group.
The WebRTC API is documented in the W3C as webrtc.

Why should I learn WebRTC?
These are some of the things that WebRTC will give you:

• Open standard
• Multiple implementations
• Available in browsers
• Mandatory encryption
• NAT Traversal
• Repurposed existing technology
• Congestion control
• Sub-second latency

This list is not exhaustive, just an example of some of the things you may
appreciate during your journey. Don’t worry if you don’t know all these terms
yet, this book will teach them to you along the way.

The WebRTC Protocol is a collection of other technologies
The WebRTC Protocol is an immense topic that would take an entire book to
explain. However, to start off we break it into four steps.

1. Signaling
2. Connecting
3. Securing
4. Communicating
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These steps are sequential, which means the prior step must be 100% successful
for the subsequent step to begin.

One peculiar fact about WebRTC is that each step is actually made up of many
other protocols! To make WebRTC, we stitch together many existing technologies.
In that sense, you can think of WebRTC as being more a combination and
configuration of well-understood tech dating back to the early 2000s than as a
brand-new process in its own right.

Each of these steps has dedicated chapters, but it is helpful to understand them
at a high level first. Since they depend on each other, it will help when explaining
further the purpose of each of these steps.

Signaling: How peers find each other in WebRTC

When a WebRTC Agent starts, it has no idea who it is going to communicate
with or what they are going to communicate about. The Signaling step solves
this issue! Signaling is used to bootstrap the call, allowing two independent
WebRTC agents to start communicating.

Signaling uses an existing, plain-text protocol called SDP (Session Description
Protocol). Each SDP message is made up of key/value pairs and contains a list
of “media sections”. The SDP that the two WebRTC agents exchange contains
details like:

• The IPs and Ports that the agent is reachable on (candidates).
• The number of audio and video tracks the agent wishes to send.
• The audio and video codecs each agent supports.
• The values used while connecting (uFrag/uPwd).
• The values used while securing (certificate fingerprint).

It is very important to note that signaling typically happens “out-of-band”, which
means applications generally don’t use WebRTC itself to exchange signaling
messages. There needs to be another communication channel between the two
parties before they can initiate a WebRTC connection. The kind of channel
being used is not a concern of WebRTC. Any architecture suitable for sending
messages can relay the SDPs between the connecting peers, and many applications
will simply use their existing infrastructure (e.g. REST endpoints, WebSocket
connections, or authentication proxies) to facilitate trading of SDPs between the
proper clients.

Connecting and NAT Traversal with STUN/TURN

Once two WebRTC agents have exchanged SDPs, they have enough information
to attempt to connect to each other. To make this connection happen, We-
bRTC uses another established technology called ICE (Interactive Connectivity
Establishment).

ICE is a protocol that pre-dates WebRTC and allows the establishment of a
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direct connection between two agents without a central server. These two agents
could be on the same network or on the other side of the world.

ICE enables direct connection, but the real magic of the connecting process
involves a concept called ‘NAT Traversal’ and the use of STUN/TURN Servers.
These two concepts, which we will explore in more depth later, are all you need
to communicate with an ICE Agent in another subnet.

When the two agents have successfully established an ICE connection, WebRTC
moves on to the next step; establishing an encrypted transport for sharing audio,
video, and data between them.

Securing the transport layer with DTLS and SRTP

Now that we have bi-directional communication (via ICE), we need to make
our communication secure! This is done through two more protocols that also
pre-date WebRTC; DTLS (Datagram Transport Layer Security) and SRTP
(Secure Real-Time Transport Protocol). The first protocol, DTLS, is simply TLS
over UDP (TLS is the cryptographic protocol used to secure communication
over HTTPS). The second protocol, SRTP, is used to ensure encryption of RTP
(Real-time Transport Protocol) data packets.

First, WebRTC connects by doing a DTLS handshake over the connection
established by ICE. Unlike HTTPS, WebRTC doesn’t use a central authority for
certificates. It simply asserts that the certificate exchanged via DTLS matches
the fingerprint shared via signaling. This DTLS connection is then used for
DataChannel messages.

Next, WebRTC uses the RTP protocol, secured using SRTP, for audio/video
transmission. We initialize our SRTP session by extracting the keys from the
negotiated DTLS session.

We will discuss why media and data transmission have their own protocols in a
later chapter, but for now it is enough to know that they are handled separately.

Now we are done! We have successfully established bi-directional and secure
communication. If you have a stable connection between your WebRTC agents,
this is all the complexity you need. In the next section, we will discuss how
WebRTC deals with the unfortunate real world problems of packet loss and
bandwidth limits.

Communicating with peers via RTP and SCTP

Now that we have two WebRTC agents connected and secure, bi-directional
communication established, let’s start communicating! Again, WebRTC will
use two pre-existing protocols: RTP (Real-time Transport Protocol), and SCTP
(Stream Control Transmission Protocol). We use RTP to exchange media
encrypted with SRTP, and we use SCTP to send and receive DataChannel
messages encrypted with DTLS.
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RTP is quite a minimal protocol, but it provides the necessary tools to implement
real-time streaming. The most important thing about RTP is that it gives
flexibility to the developer, allowing them to handle latency, package loss, and
congestion as they please. We will discuss this further in the media chapter.

The final protocol in the stack is SCTP. The important thing about SCTP is that
you can turn off reliable and in order message delivery (among many different
options). This allows developers to ensure the necessary latency for real-time
systems.

WebRTC, a collection of protocols
WebRTC solves a lot of problems. At first glance the technology may seem
over-engineered, but the genius of WebRTC is its humility. It wasn’t created
under the assumption that it could solve everything better. Instead, it embraced
many existing single purpose technologies and brought them together into a
streamlined, widely applicable bundle.

This allows us to examine and learn each part individually without being
overwhelmed. A good way to visualize it is a ‘WebRTC Agent’ is really just an
orchestrator of many different protocols.

Figure 1: WebRTC Agent
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How does the WebRTC API work?
This section outlines how the WebRTC JavaScript API maps to the WebRTC
protocol described above. It isn’t meant as an extensive demo of the WebRTC
API, but more to create a mental model of how everything ties together. If you
aren’t familiar with either the protocol or the API, don’t worry. This could be a
fun section to return to as you learn more!

new RTCPeerConnection

The RTCPeerConnection is the top-level “WebRTC Session”. It contains all
the protocols mentioned above. The subsystems are all allocated but nothing
happens yet.

addTrack

addTrack creates a new RTP stream. A random Synchronization Source (SSRC)
will be generated for this stream. This stream will then be inside the Session
Description generated by createOffer inside a media section. Each call to
addTrack will create a new SSRC and media section.

Immediately after an SRTP Session is established, these media packets will start
being encrypted using SRTP and sent via ICE.

createDataChannel

createDataChannel creates a new SCTP stream if no SCTP association exists.
SCTP is not enabled by default. It is only started when one side requests a data
channel.

Immediately after a DTLS Session is established, the SCTP association will start
sending packets encrypted with DTLS via ICE.

createOffer

createOffer generates a Session Description of the local state to be shared with
the remote peer.

The act of calling createOffer doesn’t change anything for the local peer.

setLocalDescription

setLocalDescription commits any requested changes. The calls addTrack,
createDataChannel, and similar calls are temporary until this call.
setLocalDescription is called with the value generated by createOffer.

Usually, after this call, you will send the offer to the remote peer, who will use it
to call setRemoteDescription.
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setRemoteDescription

setRemoteDescription is how we inform the local agent about the state of the
remote candidates. This is how the act of ‘Signaling’ is done with the JavaScript
API.

When setRemoteDescription has been called on both sides, the WebRTC
agents now have enough info to start communicating Peer-To-Peer (P2P)!

addIceCandidate

addIceCandidate allows a WebRTC agent to add more remote ICE Candidates
at any time. This API sends the ICE Candidate right into the ICE subsystem
and has no other effect on the greater WebRTC connection.

ontrack

ontrack is a callback fired when an RTP packet is received from the remote
peer. The incoming packets would have been declared in the Session Description
that was passed to setRemoteDescription.

WebRTC uses the SSRC and looks up the associated MediaStream and
MediaStreamTrack, and fires this callback with these details populated.

oniceconnectionstatechange

oniceconnectionstatechange is a callback that is fired which reflects a change
in the state of an ICE agent. When you have a change in network connectivity
this is how you are notified.

onconnectionstatechange

onconnectionstatechange is a combination of ICE agent and DTLS agent state.
You can watch this to be notified when ICE and DTLS have both completed
successfully.

Signaling
What is WebRTC Signaling?
When you create a WebRTC agent, it knows nothing about the other peer. It
has no idea who it is going to connect with or what they are going to send!
Signaling is the initial bootstrapping that makes a call possible. After these
values are exchanged, the WebRTC agents can communicate directly with each
other.

Signaling messages are just text. The WebRTC agents don’t care how they
are transported. They are commonly shared via Websockets, but that is not a
requirement.
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How does WebRTC signaling work?
WebRTC uses an existing protocol called the Session Description Protocol. Via
this protocol, the two WebRTC Agents will share all the state required to
establish a connection. The protocol itself is simple to read and understand. The
complexity comes from understanding all the values that WebRTC populates it
with.

This protocol is not specific to WebRTC. We will learn the Session Description
Protocol first without even talking about WebRTC. WebRTC only really takes
advantage of a subset of the protocol, so we are only going to cover what we
need. After we understand the protocol, we will move on to its applied usage in
WebRTC.

What is the Session Description Protocol (SDP)?
The Session Description Protocol is defined in RFC 8866. It is a key/value
protocol with a newline after each value. It will feel similar to an INI file. A
Session Description contains zero or more Media Descriptions. Mentally you can
model it as a Session Description that contains an array of Media Descriptions.

A Media Description usually maps to a single stream of media. So if you wanted
to describe a call with three video streams and two audio tracks you would have
five Media Descriptions.

How to read the SDP

Every line in a Session Description will start with a single character, this is your
key. It will then be followed by an equal sign. Everything after that equal sign
is the value. After the value is complete, you will have a newline.

The Session Description Protocol defines all the keys that are valid. You can
only use letters for keys as defined in the protocol. These keys all have significant
meaning, which will be explained later.

Take this Session Description excerpt:

a=my-sdp-value
a=second-value

You have two lines. Each with the key a. The first line has the value
my-sdp-value, the second line has the value second-value.

WebRTC only uses some SDP keys

Not all key values defined by the Session Description Protocol are used by
WebRTC. Only keys used in the JavaScript Session Establishment Protocol
(JSEP), defined in RFC 8829, are important. The following seven keys are the
only ones you need to understand right now:
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• v - Version, should be equal to 0.
• o - Origin, contains a unique ID useful for renegotiations.
• s - Session Name, should be equal to -.
• t - Timing, should be equal to 0 0.
• m - Media Description (m=<media> <port> <proto> <fmt> ...),

described in detail below.
• a - Attribute, a free text field. This is the most common line in WebRTC.
• c - Connection Data, should be equal to IN IP4 0.0.0.0.

Media Descriptions in a Session Description

A Session Description can contain an unlimited number of Media Descriptions.

A Media Description definition contains a list of formats. These formats map
to RTP Payload Types. The actual codec is then defined by an Attribute with
the value rtpmap in the Media Description. The importance of RTP and RTP
Payload Types is discussed later in the Media chapter. Each Media Description
can contain an unlimited number of attributes.

Take this Session Description excerpt as an example:

v=0
m=audio 4000 RTP/AVP 111
a=rtpmap:111 OPUS/48000/2
m=video 4000 RTP/AVP 96
a=rtpmap:96 VP8/90000
a=my-sdp-value

You have two Media Descriptions, one of type audio with fmt 111 and one
of type video with the format 96. The first Media Description has only one
attribute. This attribute maps the Payload Type 111 to Opus. The second
Media Description has two attributes. The first attribute maps the Payload
Type 96 to be VP8, and the second attribute is just my-sdp-value.

Full Example

The following brings all the concepts we have talked about together. These are
all the features of the Session Description Protocol that WebRTC uses. If you
can read this, you can read any WebRTC Session Description!

v=0
o=- 0 0 IN IP4 127.0.0.1
s=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 4000 RTP/AVP 111
a=rtpmap:111 OPUS/48000/2
m=video 4002 RTP/AVP 96
a=rtpmap:96 VP8/90000
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• v, o, s, c, t are defined, but they do not affect the WebRTC session.
• You have two Media Descriptions. One of type audio and one of type

video.
• Each of those has one attribute. This attribute configures details of the

RTP pipeline, which is discussed in the “Media Communication” chapter.

How Session Description Protocol and WebRTC work to-
gether
The next piece of the puzzle is understanding how WebRTC uses the Session
Description Protocol.

What are Offers and Answers?

WebRTC uses an offer/answer model. All this means is that one WebRTC Agent
makes an “Offer” to start a call, and the other WebRTC Agents “Answers” if it
is willing to accept what has been offered.

This gives the answerer a chance to reject unsupported codecs in the Media
Descriptions. This is how two peers can understand what formats they are
willing to exchange.

Transceivers are for sending and receiving

Transceivers is a WebRTC specific concept that you will see in the API. What it
is doing is exposing the “Media Description” to the JavaScript API. Each Media
Description becomes a Transceiver. Every time you create a Transceiver a new
Media Description is added to the local Session Description.

Each Media Description in WebRTC will have a direction attribute. This allows
a WebRTC Agent to declare “I am going to send you this codec, but I am not
willing to accept anything back”. There are four valid values:

• send
• recv
• sendrecv
• inactive

SDP Values used by WebRTC

This is a list of some common attributes that you will see in a Session Description
from a WebRTC Agent. Many of these values control the subsystems that we
haven’t discussed yet.

group:BUNDLE Bundling is an act of running multiple types of traffic over one
connection. Some WebRTC implementations use a dedicated connection per
media stream. Bundling should be preferred.
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fingerprint:sha-256 This is a hash of the certificate a peer is using for
DTLS. After the DTLS handshake is completed, you compare this to the actual
certificate to confirm you are communicating with whom you expect.

setup: This controls the DTLS Agent behavior. This determines if it runs as
a client or server after ICE has connected. The possible values are:

• setup:active - Run as DTLS Client.
• setup:passive - Run as DTLS Server.
• setup:actpass - Ask the other WebRTC Agent to choose.

mid The “mid” attribute is used for identifying media streams within a session
description.

ice-ufrag This is the user fragment value for the ICE Agent. Used for the
authentication of ICE Traffic.

ice-pwd This is the password for the ICE Agent. Used for authentication of
ICE Traffic.

rtpmap This value is used to map a specific codec to an RTP Payload Type.
Payload types are not static, so for every call the offerer decides the payload
types for each codec.

fmtp Defines additional values for one Payload Type. This is useful to commu-
nicate a specific video profile or encoder setting.

candidate This is an ICE Candidate that comes from the ICE Agent. This is
one possible address that the WebRTC Agent is available on. These are fully
explained in the next chapter.

ssrc A Synchronization Source (SSRC) defines a single media stream track.

label is the ID for this individual stream. mslabel is the ID for a container
that can have multiple streams inside it.

Example of a WebRTC Session Description

The following is a complete Session Description generated by a WebRTC Client:

v=0
o=- 3546004397921447048 1596742744 IN IP4 0.0.0.0
s=-
t=0 0
a=fingerprint:sha-256 0F:74:31:25:CB:A2:13:EC:28:6F:6D:2C:61:FF:5D:C2:BC:B9:DB:3D:98:14:8D:1A:BB:EA:33:0C:A4:60:A8:8E
a=group:BUNDLE 0 1
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m=audio 9 UDP/TLS/RTP/SAVPF 111
c=IN IP4 0.0.0.0
a=setup:active
a=mid:0
a=ice-ufrag:CsxzEWmoKpJyscFj
a=ice-pwd:mktpbhgREmjEwUFSIJyPINPUhgDqJlSd
a=rtcp-mux
a=rtcp-rsize
a=rtpmap:111 opus/48000/2
a=fmtp:111 minptime=10;useinbandfec=1
a=ssrc:350842737 cname:yvKPspsHcYcwGFTw
a=ssrc:350842737 msid:yvKPspsHcYcwGFTw DfQnKjQQuwceLFdV
a=ssrc:350842737 mslabel:yvKPspsHcYcwGFTw
a=ssrc:350842737 label:DfQnKjQQuwceLFdV
a=msid:yvKPspsHcYcwGFTw DfQnKjQQuwceLFdV
a=sendrecv
a=candidate:foundation 1 udp 2130706431 192.168.1.1 53165 typ host generation 0
a=candidate:foundation 2 udp 2130706431 192.168.1.1 53165 typ host generation 0
a=candidate:foundation 1 udp 1694498815 1.2.3.4 57336 typ srflx raddr 0.0.0.0 rport 57336 generation 0
a=candidate:foundation 2 udp 1694498815 1.2.3.4 57336 typ srflx raddr 0.0.0.0 rport 57336 generation 0
a=end-of-candidates
m=video 9 UDP/TLS/RTP/SAVPF 96
c=IN IP4 0.0.0.0
a=setup:active
a=mid:1
a=ice-ufrag:CsxzEWmoKpJyscFj
a=ice-pwd:mktpbhgREmjEwUFSIJyPINPUhgDqJlSd
a=rtcp-mux
a=rtcp-rsize
a=rtpmap:96 VP8/90000
a=ssrc:2180035812 cname:XHbOTNRFnLtesHwJ
a=ssrc:2180035812 msid:XHbOTNRFnLtesHwJ JgtwEhBWNEiOnhuW
a=ssrc:2180035812 mslabel:XHbOTNRFnLtesHwJ
a=ssrc:2180035812 label:JgtwEhBWNEiOnhuW
a=msid:XHbOTNRFnLtesHwJ JgtwEhBWNEiOnhuW
a=sendrecv

This is what we know from this message:

• We have two media sections, one audio and one video.
• Both of them are sendrecv transceivers. We are getting two streams, and

we can send two back.
• We have ICE Candidates and Authentication details, so we can attempt

to connect.
• We have a certificate fingerprint, so we can have a secure call.
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Further Topics

In later versions of this book, the following topics will also be addressed:

• Renegotiation
• Simulcast

Connecting
Why does WebRTC need a dedicated subsystem for con-
necting?
Most applications deployed today establish client/server connections. A
client/server connection requires the server to have a stable well-known transport
address. A client contacts a server, and the server responds.

WebRTC doesn’t use a client/server model, it establishes peer-to-peer (P2P)
connections. In a P2P connection the task of creating a connection is equally
distributed to both peers. This is because a transport address (IP and port) in
WebRTC can not be assumed, and may even change during the session. WebRTC
will gather all the information it can and will go to great lengths to achieve
bi-directional communication between two WebRTC Agents.

Establishing peer-to-peer connectivity can be difficult though. These agents
could be in different networks with no direct connectivity. In situations where
direct connectivity does exist you can still have other issues. In some cases, your
clients don’t speak the same network protocols (UDP <-> TCP) or maybe use
different IP Versions (IPv4 <-> IPv6).

Despite these difficulties in setting up a P2P connection, you get advantages
over traditional Client/Server technology because of the following attributes that
WebRTC offers.

Reduced Bandwidth Costs

Since media communication happens directly between peers you don’t have to
pay for, or host a separate server to relay media.

Lower Latency

Communication is faster when it is direct! When a user has to run everything
through your server, it makes transmissions slower.

Secure E2E Communication

Direct Communication is more secure. Since users aren’t routing data through
your server, they don’t even need to trust you won’t decrypt it.
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How does it work?
The process described above is called Interactive Connectivity Establishment
(ICE). Another protocol that pre-dates WebRTC.

ICE is a protocol that tries to find the best way to communicate between two
ICE Agents. Each ICE Agent publishes the ways it is reachable, these are known
as candidates. A candidate is essentially a transport address of the agent that
it believes the other peer can reach. ICE then determines the best pairing of
candidates.

The actual ICE process is described in greater detail later in this chapter. To
understand why ICE exists, it is useful to understand what network behaviors
we are overcoming.

Networking real-world constraints
ICE is all about overcoming the constraints of real-world networks. Before we
explore the solution, let’s talk about the actual problems.

Not in the same network

Most of the time the other WebRTC Agent will not even be in the same network.
A typical call is usually between two WebRTC Agents in different networks with
no direct connectivity.

Below is a graph of two distinct networks, connected over public internet. In
each network you have two hosts.

Figure 2: Two networks

For the hosts in the same network it is very easy to connect. Communication
between 192.168.0.1 -> 192.168.0.2 is easy to do! These two hosts can
connect to each other without any outside help.

However, a host using Router B has no way to directly access anything behind
Router A. How would you tell the difference between 192.168.0.1 behind

21

https://tools.ietf.org/html/rfc8445


Router A and the same IP behind Router B? They are private IPs! A host
using Router B could send traffic directly to Router A, but the request would
end there. How does Router A know which host it should forward the message
to?

Protocol Restrictions

Some networks don’t allow UDP traffic at all, or maybe they don’t allow TCP.
Some networks may have a very low MTU (Maximum Transmission Unit).
There are lots of variables that network administrators can change that can
make communication difficult.

Firewall/IDS Rules

Another is “Deep Packet Inspection” and other intelligent filtering. Some network
administrators will run software that tries to process every packet. Many times
this software doesn’t understand WebRTC, so it blocks it because it doesn’t
know what to do, e.g. treating WebRTC packets as suspicious UDP packets on
an arbitrary port that is not whitelisted.

NAT Mapping
NAT (Network Address Translation) mapping is the magic that makes the
connectivity of WebRTC possible. This is how WebRTC allows two peers in
completely different subnets to communicate, addressing the “not in the same
network” problem above. While it creates new challenges, let’s explain how NAT
mapping works in the first place.

It doesn’t use a relay, proxy, or server. Again we have Agent 1 and Agent 2 and
they are in different networks. However, traffic is flowing completely through.
Visualized it looks like this:

To make this communication happen you establish a NAT mapping. Agent 1
uses port 7000 to establish a WebRTC connection with Agent 2. This creates a
binding of 192.168.0.1:7000 to 5.0.0.1:7000. This then allows Agent 2 to
reach Agent 1 by sending packets to 5.0.0.1:7000. Creating a NAT mapping
like in this example is like an automated version of doing port forwarding in
your router.

The downside to NAT mapping is that there isn’t a single form of mapping
(e.g. static port forwarding), and the behavior is inconsistent between networks.
ISPs and hardware manufacturers may do it in different ways. In some cases,
network administrators may even disable it.

The good news is the full range of behaviors is understood and observable, so an
ICE Agent is able to confirm it created a NAT mapping, and the attributes of
the mapping.

The document that describes these behaviors is RFC 4787.
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Figure 3: NAT mapping
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Creating a mapping

Creating a mapping is the easiest part. When you send a packet to an address
outside your network, a mapping is created! A NAT mapping is just a temporary
public IP and port that is allocated by your NAT. The outbound message will
be rewritten to have its source address given by the newly mapping address. If
a message is sent to the mapping, it will be automatically routed back to the
host inside the NAT that created it. The details around mappings is where it
gets complicated.

Mapping Creation Behaviors

Mapping creation falls into three different categories:

Endpoint-Independent Mapping One mapping is created for each sender
inside the NAT. If you send two packets to two different remote addresses, the
NAT mapping will be re-used. Both remote hosts would see the same source IP
and port. If the remote hosts respond, it would be sent back to the same local
listener.

This is the best-case scenario. For a call to work, at least one side MUST be of
this type.

Address Dependent Mapping A new mapping is created every time you
send a packet to a new address. If you send two packets to different hosts, two
mappings will be created. If you send two packets to the same remote host but
different destination ports, a new mapping will NOT be created.

Address and Port Dependent Mapping A new mapping is created if the
remote IP or port is different. If you send two packets to the same remote host,
but different destination ports, a new mapping will be created.

Mapping Filtering Behaviors

Mapping filtering is the rules around who is allowed to use the mapping. They
fall into three similar classifications:

Endpoint-Independent Filtering Anyone can use the mapping. You can
share the mapping with multiple other peers, and they could all send traffic to
it.

Address Dependent Filtering Only the host the mapping was created for
can use the mapping. If you send a packet to host A you can only get a response
from that same host. If host B attempts to send a packet to that mapping, it
will be ignored.
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Address and Port Dependent Filtering Only the host and port for which
the mapping was created for can use that mapping. If you send a packet to
A:5000 you can only get a response from that same host and port. If A:5001
attempts to send a packet to that mapping, it will be ignored.

Mapping Refresh

It is recommended that if a mapping is unused for 5 minutes it should be
destroyed. This is entirely up to the ISP or hardware manufacturer.

STUN
STUN (Session Traversal Utilities for NAT) is a protocol that was created just
for working with NATs. This is another technology that pre-dates WebRTC
(and ICE!). It is defined by RFC 8489, which also defines the STUN packet
structure. The STUN protocol is also used by ICE/TURN.

STUN is useful because it allows the programmatic creation of NAT Mappings.
Before STUN, we were able to create a NAT mapping, but we had no idea what
the IP and port of it was! STUN not only gives you the ability to create a
mapping, but also gives you the details so that you can share them with others,
so they can send traffic back to you via the mapping you just created.

Let’s start with a basic description of STUN. Later, we will expand on TURN
and ICE usage. For now, we are just going to describe the Request/Response
flow to create a mapping. Then we will talk about how to get the details of it
to share with others. This is the process that happens when you have a stun:
server in your ICE URLs for a WebRTC PeerConnection. In a nutshell, STUN
helps an endpoint behind a NAT figure out what mapping was created by asking
a STUN server outside NAT to report what it observes.

Protocol Structure

Every STUN packet has the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0| STUN Message Type | Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Magic Cookie |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Transaction ID (96 bits) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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STUN Message Type Each STUN packet has a type. For now, we only care
about the following:

• Binding Request - 0x0001
• Binding Response - 0x0101

To create a NAT mapping we make a Binding Request. Then the server
responds with a Binding Response.

Message Length This is how long the Data section is. This section contains
arbitrary data that is defined by the Message Type.

Magic Cookie The fixed value 0x2112A442 in network byte order, it helps
distinguish STUN traffic from other protocols.

Transaction ID A 96-bit identifier that uniquely identifies a request/response.
This helps you pair up your requests and responses.

Data Data will contain a list of STUN attributes. A STUN Attribute has the
following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value (variable) ....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The STUN Binding Request uses no attributes. This means a STUN Binding
Request contains only the header.

The STUN Binding Response uses a XOR-MAPPED-ADDRESS (0x0020). This at-
tribute contains an IP and port. This is the IP and port of the NAT mapping
that is created!

Create a NAT Mapping

Creating a NAT mapping using STUN just takes sending one request! You
send a STUN Binding Request to the STUN Server. The STUN Server then
responds with a STUN Binding Response. This STUN Binding Response will
contain the Mapped Address. The Mapped Address is how the STUN Server
sees you and is your NAT mapping. The Mapped Address is what you would
share if you wanted someone to send packets to you.

People will also call the Mapped Address your Public IP or Server Reflexive
Candidate.

26



Determining NAT Type

Unfortunately, the Mapped Address might not be useful in all cases. If it is
Address Dependent, only the STUN server can send traffic back to you. If you
shared it and another peer tried to send messages in they will be dropped. This
makes it useless for communicating with others. You may find the Address
Dependent case is in fact solvable, if the host that runs the STUN server can
also forward packets for you to the peer! This leads us to the solution using
TURN below.

RFC 5780 defines a method for running a test to determine your NAT Type.
This is useful because you would know ahead of time if direct connectivity is
possible.

TURN
TURN (Traversal Using Relays around NAT) is defined in RFC 8656 is the
solution when direct connectivity isn’t possible. It could be because you have
two NAT Types that are incompatible, or maybe can’t speak the same protocol!
TURN can also be used for privacy purposes. By running all your communication
through TURN you obscure the client’s actual address.

TURN uses a dedicated server. This server acts as a proxy for a client. The
client connects to a TURN Server and creates an Allocation. By creating an
allocation, a client gets a temporary IP/Port/Protocol that can be used to send
traffic back to the client. This new listener is known as the Relayed Transport
Address. Think of it as a forwarding address, you give this out so that others
can send you traffic via TURN! For each peer you give the Relay Transport
Address to, you must create a new Permission to allow communication with
you.

When you send outbound traffic via TURN it is sent via the Relayed Transport
Address. When a remote peer gets traffic they see it coming from the TURN
Server.

TURN Lifecycle

The following is everything that a client who wishes to create a TURN allocation
has to do. Communicating with someone who is using TURN requires no changes.
The other peer gets an IP and port, and they communicate with it like any other
host.

Allocations Allocations are at the core of TURN. An allocation is basically
a “TURN Session”. To create a TURN allocation you communicate with the
TURN Server Transport Address (usually port 3478).

When creating an allocation, you need to provide the following: * User-
name/Password - Creating TURN allocations require authentication. *
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Allocation Transport - The transport protocol between the server (Relayed
Transport Address) and the peers, can be UDP or TCP. * Even-Port - You
can request sequential ports for multiple allocations, not relevant for WebRTC.

If the request succeeded, you get a response with the TURN Server with
the following STUN Attributes in the Data section: * XOR-MAPPED-ADDRESS -
Mapped Address of the TURN Client. When someone sends data to the Relayed
Transport Address this is where it is forwarded to. * RELAYED-ADDRESS - This
is the address that you give out to other clients. If someone sends a packet to
this address, it is relayed to the TURN client. * LIFETIME - How long until
this TURN Allocation is destroyed. You can extend the lifetime by sending a
Refresh request.

Permissions A remote host can’t send into your Relayed Transport
Address until you create a permission for them. When you create a permission,
you are telling the TURN server that this IP and port is allowed to send inbound
traffic.

The remote host needs to give you the IP and port as it appears to the TURN
server. This means it should send a STUN Binding Request to the TURN
Server. A common error case is that a remote host will send a STUN Binding
Request to a different server. They will then ask you to create a permission for
this IP.

Let’s say you want to create a permission for a host behind a Address Dependent
Mapping. If you generate the Mapped Address from a different TURN server, all
inbound traffic will be dropped. Every time they communicate with a different
host it generates a new mapping. Permissions expire after 5 minutes if they are
not refreshed.

SendIndication/ChannelData These two messages are for the TURN Client
to send messages to a remote peer.

SendIndication is a self-contained message. Inside it is the data you wish to
send, and who you wish to send it to. This is wasteful if you are sending a lot of
messages to a remote peer. If you send 1,000 messages you will repeat their IP
Address 1,000 times!

ChannelData allows you to send data, but not repeat an IP Address. You create
a Channel with an IP and port. You then send with the ChannelId, and the
IP and port will be populated server side. This is the better choice if you are
sending a lot of messages.

Refreshing Allocations will destroy themselves automatically. The TURN
Client must refresh them sooner than the LIFETIME given when creating the
allocation.
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TURN Usage

TURN Usage exists in two forms. Usually, you have one peer acting as a “TURN
Client” and the other side communicating directly. In some cases you might have
TURN usage on both sides, for example because both clients are in networks
that block UDP and therefore the connection to the respective TURN servers
happens via TCP.

These diagrams help illustrate what that would look like.

Figure 4: One TURN allocation

One TURN Allocation for Communication

Two TURN Allocations for Communication

ICE
ICE (Interactive Connectivity Establishment) is how WebRTC connects two
Agents. Defined in RFC 8445, this is another technology that pre-dates WebRTC!
ICE is a protocol for establishing connectivity. It determines all the possible
routes between the two peers and then ensures you stay connected.

These routes are known as Candidate Pairs, which is a pairing of a local and
remote transport address. This is where STUN and TURN come into play with
ICE. These addresses can be your local IP Address plus a port, NAT mapping,
or Relayed Transport Address. Each side gathers all the addresses they want
to use, exchanges them, and then attempts to connect!

Two ICE Agents communicate using ICE ping packets (or formally called the
connectivity checks) to establish connectivity. After connectivity is established,
they can send whatever data they want. It will be like using a normal socket.
These checks use the STUN protocol.
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Figure 5: Two TURN allocations
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Creating an ICE Agent

An ICE Agent is either Controlling or Controlled. The Controlling Agent
is the one that decides the selected Candidate Pair. Usually, the peer sending
the offer is the controlling side.

Each side must have a user fragment and a password. These two values must
be exchanged before connectivity checks can even begin. The user fragment
is sent in plain text and is useful for demuxing multiple ICE Sessions. The
password is used to generate a MESSAGE-INTEGRITY attribute. At the end of
each STUN packet, there is an attribute that is a hash of the entire packet using
the password as a key. This is used to authenticate the packet and ensure it
hasn’t been tampered with.

For WebRTC, all these values are distributed via the Session Description as
described in the previous chapter.

Candidate Gathering

We now need to gather all the possible addresses we are reachable at. These
addresses are known as candidates.

Host A Host candidate is listening directly on a local interface. This can either
be UDP or TCP.

mDNS An mDNS candidate is similar to a host candidate, but the IP address
is obscured. Instead of informing the other side about your IP address, you
give them a UUID as the hostname. You then set up a multicast listener, and
respond if anyone requests the UUID you published.

If you are in the same network as the agent, you can find each other via Multicast.
If you are not in the same network, you will be unable to connect (unless the
network administrator explicitly configured the network to allow Multicast
packets to traverse).

This is useful for privacy purposes. A user could find out your local IP address
via WebRTC with a Host candidate (without even trying to connect to you),
but with an mDNS candidate, now they only get a random UUID.

Server Reflexive A Server Reflexive candidate is generated by doing a STUN
Binding Request to a STUN Server.

When you get the STUN Binding Response, the XOR-MAPPED-ADDRESS is your
Server Reflexive Candidate.

Peer Reflexive A Peer Reflexive candidate is created when the remote peer
is receiving your request from an address previously unknown to the peer. Upon
receiving, the peer reports (reflects) the said address back to you. The peer
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knows that the request was sent by you and not someone else because ICE is an
authenticated protocol.

This commonly happens when a Host Candidate communicates with a Server
Reflexive Candidate that is in a different subnet, which results in a new NAT
mapping being created. Remember we said the connectivity checks are in fact
STUN packets? The format of STUN response naturally allows a peer to report
back the peer-reflexive address.

Relay A Relay Candidate is generated by using a TURN Server.

After the initial handshake with the TURN Server you are given a
RELAYED-ADDRESS, this is your Relay Candidate.

Connectivity Checks

We now know the remote agent’s user fragment, password, and candidates.
We can now attempt to connect! Every candidate is paired with each other. So
if you have 3 candidates on each side, you now have 9 candidate pairs.

Visually it looks like this:

Candidate Selection

The Controlling and Controlled Agent both start sending traffic on each pair.
This is needed if one Agent is behind an Address Dependent Mapping, this will
cause a Peer Reflexive Candidate to be created.

Each Candidate Pair that saw network traffic is then promoted to a Valid
Candidate pair. The Controlling Agent then takes one Valid Candidate pair
and nominates it. This becomes the Nominated Pair. The Controlling and
Controlled Agent then attempt one more round of bi-directional communication.
If that succeeds, the Nominated Pair becomes the Selected Candidate Pair!
This pair is then used for the rest of the session.

Restarts

If the Selected Candidate Pair stops working for any reason (NAT mapping
expires, TURN Server crashes) the ICE Agent will go to Failed state. Both
agents can be restarted and will do the whole process all over again.

Securing
What security does WebRTC have?
Every WebRTC connection is authenticated and encrypted. You can be confident
that a 3rd party can’t see what you are sending or insert bogus messages. You
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Figure 6: Connectivity checks
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can also be sure that the WebRTC Agent that generated the Session Description
is the one you are communicating with.

It is very important that no one tampers with those messages. It is ok if a
3rd party reads the Session Description in transit. However, WebRTC has no
protection against it being modified. An attacker could perform a man-in-the-
middle attack on you by changing the ICE Candidates and update the Certificate
Fingerprint.

How does it work?
WebRTC uses two pre-existing protocols, Datagram Transport Layer Security
(DTLS) and the Secure Real-time Transport Protocol (SRTP).

DTLS allows you to negotiate a session and then exchange data securely between
two peers. It is a sibling of TLS, the same technology that powers HTTPS, but
DTLS uses UDP instead of TCP as the transport layer. That means the protocol
has to handle unreliable delivery. SRTP is specifically designed for exchanging
media securely. There are some optimizations we can make by using it instead
of DTLS.

DTLS is used first. It does a handshake over the connection provided by ICE.
DTLS is a client/server protocol, so one side needs to start the handshake. The
Client/Server roles are chosen during signaling. During the DTLS handshake,
both sides offer a certificate. After the handshake is complete, this certificate is
compared to the certificate hash in the Session Description. This is to ensure
that the handshake happened with the WebRTC Agent you expected. The
DTLS connection is then available to be used for DataChannel communication.

To create an SRTP session we initialize it using the keys generated by DTLS.
SRTP does not have a handshake mechanism, so has to be bootstrapped with
external keys. Once this is done, media can be exchanged that is encrypted
using SRTP!

Security 101
To understand the technology presented in this chapter you will need to under-
stand these terms first. Cryptography is a tricky subject, so it would be worth
consulting other sources as well!

Plaintext and Ciphertext

Plaintext is the input to a cipher. Ciphertext is the output of a cipher.

Cipher

Cipher is a series of steps that takes plaintext to ciphertext. The cipher can
then be reversed, so you can take your ciphertext back to plaintext. A cipher
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usually has a key to change its behavior. Another term for this is encrypting
and decrypting.

A simple cipher is ROT13. Each letter is moved 13 characters forward. To undo
the cipher you move 13 characters backward. The plaintext HELLO would become
the ciphertext URYYB. In this case, the Cipher is ROT, and the key is 13.

Hash functions

A cryptographic hash function is a one-way process that generates a digest.
Given an input, it generates the same output every time. It is important that
the output is not reversible. If you have an output, you should not be able to
determine its input. Hashing is useful when you want to confirm that a message
hasn’t been tampered with.

A simple (although certainly not suitable for real cryptography) hash function
would be to only take every other letter. HELLO would become HLO. You can’t
assume HELLO was the input, but you can confirm that HELLO would be a match
to the hash digest.

Public/Private Key Cryptography

Public/Private Key Cryptography describes the type of ciphers that DTLS and
SRTP uses. In this system, you have two keys, a public and private key. The
public key is for encrypting messages and is safe to share. The private key is for
decrypting, and should never be shared. It is the only key that can decrypt the
messages encrypted with the public key.

Diffie–Hellman exchange

Diffie–Hellman exchange allows two users who have never met before to create
a shared secret securely over the internet. User A can send a secret to User
B without worrying about eavesdropping. This depends on the difficulty of
breaking the discrete logarithm problem. You don’t need to fully understand
how this works, but it helps to know this is what makes the DTLS handshake
possible.

Wikipedia has an example of this in action here.

Pseudorandom Function

A Pseudorandom Function (PRF) is a pre-defined function to generate a value
that appears random. It may take multiple inputs and generate a single output.

Key Derivation Function

Key Derivation is a type of Pseudorandom Function. Key Derivation is a function
that is used to make a key stronger. One common pattern is key stretching.
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Let’s say you are given a key that is 8 bytes. You could use a KDF to make it
stronger.

Nonce

A nonce is an additional input to a cipher. This is used so that you can get
different output from the cipher, even if you are encrypting the same message
multiple times.

If you encrypt the same message 10 times, the cipher will give you the same
ciphertext 10 times. By using a nonce you can get different output, while still
using the same key. It is important you use a different nonce for each message!
Otherwise, it negates much of the value.

Message Authentication Code

A Message Authentication Code is a hash that is placed at the end of a message.
A MAC proves that the message comes from the user you expected.

If you don’t use a MAC, an attacker could insert invalid messages. After
decrypting you would just have garbage because they don’t know the key.

Key Rotation

Key Rotation is the practice of changing your key on an interval. This makes
a stolen key less impactful. If a key is stolen or leaked, fewer data can be
decrypted.

DTLS
DTLS (Datagram Transport Layer Security) allows two peers to establish se-
cure communication with no pre-existing configuration. Even if someone is
eavesdropping on the conversation, they will not be able to decrypt the messages.

For a DTLS Client and a Server to communicate, they need to agree on a cipher
and the key. They determine these values by doing a DTLS handshake. During
the handshake, the messages are in plaintext. When a DTLS Client/Server has
exchanged enough details to start encrypting it sends a Change Cipher Spec.
After this message, each subsequent message will be encrypted!

Packet Format

Every DTLS packet starts with a header.

Content Type You can expect the following types:

• 20 - Change Cipher Spec
• 22 - Handshake
• 23 - Application Data
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Handshake is used to exchange the details to start the session. Change
Cipher Spec is used to notify the other side that everything will be encrypted.
Application Data are the encrypted messages.

Version Version can either be 0x0000feff (DTLS v1.0) or 0x0000fefd (DTLS
v1.2) there is no v1.1.

Epoch The epoch starts at 0, but becomes 1 after a Change Cipher Spec.
Any message with a non-zero epoch is encrypted.

Sequence Number Sequence Number is used to keep messages in order. Each
message increases the Sequence Number. When the epoch is incremented, the
Sequence Number starts over.

Length and Payload The Payload is Content Type specific. For a
Application Data the Payload is the encrypted data. For Handshake it will
be different depending on the message. The length is for how big the Payload is.

Handshake State Machine

During the handshake, the Client/Server exchanges a series of messages. These
messages are grouped into flights. Each flight may have multiple messages in it
(or just one). A Flight is not complete until all the messages in the flight have
been received. We will describe the purpose of each message in greater detail
below.

ClientHello ClientHello is the initial message sent by the client. It contains a
list of attributes. These attributes tell the server the ciphers and features the
client supports. For WebRTC this is how we choose the SRTP Cipher as well. It
also contains random data that will be used to generate the keys for the session.

HelloVerifyRequest HelloVerifyRequest is sent by the server to the client.
It is to make sure that the client intended to send the request. The Client then
re-sends the ClientHello, but with a token provided in the HelloVerifyRequest.

ServerHello ServerHello is the response by the server for the configuration of
this session. It contains what cipher will be used when this session is over. It
also contains the server random data.

Certificate Certificate contains the certificate for the Client or Server. This is
used to uniquely identify who we were communicating with. After the handshake
is over we will make sure this certificate when hashed matches the fingerprint in
the SessionDescription.
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Figure 7: Handshake
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ServerKeyExchange/ClientKeyExchange These messages are used to
transmit the public key. On startup, the client and server both generate a keypair.
After the handshake these values will be used to generate the Pre-Master
Secret.

CertificateRequest A CertificateRequest is sent by the server notifying the
client that it wants a certificate. The server can either Request or Require a
certificate.

ServerHelloDone ServerHelloDone notifies the client that the server is done
with the handshake.

CertificateVerify CertificateVerify is how the sender proves that it has the
private key sent in the Certificate message.

ChangeCipherSpec ChangeCipherSpec informs the receiver that everything
sent after this message will be encrypted.

Finished Finished is encrypted and contains a hash of all messages. This is
to assert that the handshake was not tampered with.

Key Generation

After the Handshake is complete, you can start sending encrypted data. The
Cipher was chosen by the server and is in the ServerHello. How was the key
chosen though?

First we generate the Pre-Master Secret. To obtain this value Diffie–Hellman is
used on the keys exchanged by the ServerKeyExchange and ClientKeyExchange.
The details differ depending on the chosen Cipher.

Next the Master Secret is generated. Each version of DTLS has a defined
Pseudorandom function. For DTLS 1.2 the function takes the Pre-Master
Secret and random values in the ClientHello and ServerHello. The output
from running the Pseudorandom Function is the Master Secret. The Master
Secret is the value that is used for the Cipher.

Exchanging ApplicationData

The workhorse of DTLS is ApplicationData. Now that we have an initialized
cipher, we can start encrypting and sending values.

ApplicationData messages use a DTLS header as described earlier. The
Payload is populated with ciphertext. You now have a working DTLS Ses-
sion and can communicate securely.

DTLS has many more interesting features like renegotiation. They are not used
by WebRTC, so they will not be covered here.
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SRTP
SRTP is a protocol designed specifically for encrypting RTP packets. To start
an SRTP session you specify your keys and cipher. Unlike DTLS it has no
handshake mechanism. All the configuration and keys were generated during
the DTLS handshake.

DTLS provides a dedicated API to export the keys to be used by another process.
This is defined in RFC 5705.

Session Creation

SRTP defines a Key Derivation Function that is used on the inputs. When
creating an SRTP Session the inputs are run through this to generate our keys
for our SRTP Cipher. After this you can move on to processing media.

Exchanging Media

Each RTP packet has a 16 bit SequenceNumber. These Sequence Numbers
are used to keep packets in order, like a Primary Key. During a call these will
rollover. SRTP keeps track of it and calls this the rollover counter.

When encrypting a packet SRTP uses the rollover counter and sequence number
as a nonce. This is to ensure that even if you send the same data twice, the
ciphertext will be different. This is important to prevent an attacker from
identifying patterns or attempting a replay attack.

Real-time Networking
Why is networking so important in Real-time communica-
tion?
Networks are the limiting factor in Real-time communication. In an ideal world
we would have unlimited bandwidth and packets would arrive instantaneously.
This isn’t the case though. Networks are limited, and the conditions could
change at anytime. Measuring and observing network conditions is also a difficult
problem. You can get different behaviors depending on hardware, software and
the configuration of it.

Real-time communication also poses a problem that doesn’t exist in most other
domains. For a web developer it isn’t fatal if your website is slower on some
networks. As long as all the data arrives, users are happy. With WebRTC, if
your data is late it is useless. No one cares about what was said in a conference
call 5 seconds ago. So when developing a realtime communication system, you
have to make a trade-off. What is my time limit, and how much data can I send?

This chapter covers the concepts that apply to both data and media communica-
tion. In later chapters we go beyond the theoretical and discuss how WebRTC’s
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media and data subsystems solve these problems.

What are the attributes of the network that make it difficult?
Code that effectively works across all networks is complicated. You have lots of
different factors, and they can all affect each other subtly. These are the most
common issues that developers will encounter.

Bandwidth Bandwidth is the maximum rate of data that can be transferred
across a given path. It is important to remember this isn’t a static number either.
The bandwidth will change along the route as more (or less) people use it.

Transmission Time and Round Trip Time Transmission Time is how
long it takes for a packet to arrive to its destination. Like Bandwidth this isn’t
constant. The Transmission Time can fluctuate at anytime.

transmission_time = receive_time - send_time

To compute transmission time, you need clocks on sender and receiver syn-
chronized with millisecond precision. Even a small deviation would produce
an unreliable transmission time measurement. Since WebRTC is operating in
highly heterogeneous environments, it is next to impossible to rely on perfect
time synchronization between hosts.

Round-trip time measurement is a workaround for imperfect clock synchroniza-
tion.

Instead of operating on distributed clocks a WebRTC peer sends a special packet
with its own timestamp sendertime1. A cooperating peer receives the packet
and reflects the timestamp back to the sender. Once the original sender gets the
reflected time it subtracts the timestamp sendertime1 from the current time
sendertime2. This time delta is called “round-trip propagation delay” or more
commonly round-trip time.

rtt = sendertime2 - sendertime1

Half of the round trip time is considered to be a good enough approximation
of transmission time. This workaround is not without drawbacks. It makes the
assumption that it takes an equal amount of time to send and receive packets.
However on cellular networks, send and receive operations may not be time-
symmetrical. You may have noticed that upload speeds on your phone are almost
always lower than download speeds.

transmission_time = rtt/2

The technicalities of round-trip time measurement are described in greater detail
in RTCP Sender and Receiver Reports chapter.
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Jitter Jitter is the fact that Transmission Time may vary for each packet.
Your packets could be delayed, but then arrive in bursts.

Packet Loss Packet Loss is when messages are lost in transmission. The loss
could be steady, or it could come in spikes. This could be because of the network
type like satellite or Wi-Fi. Or it could be introduced by the software along the
way.

Maximum Transmission Unit Maximum Transmission Unit is the limit on
how large a single packet can be. Networks don’t allow you to send one giant
message. At the protocol level, messages might have to be split into multiple
smaller packets.

The MTU will also differ depending on what network path you take. You can
use a protocol like Path MTU Discovery to figure out the largest packet size you
can send.

Congestion

Congestion is when the limits of the network have been reached. This is usually
because you have reached the peak bandwidth that the current route can handle.
Or it could be operator imposed like hourly limits your ISP configures.

Congestion exhibits itself in many different ways. There is no standardized
behavior. In most cases when congestion is reached the network will drop excess
packets. In other cases the network will buffer. This will cause the Transmission
Time for your packets to increase. You could also see more jitter as your network
becomes congested. This is a rapidly changing area and new algorithms for
congestion detection are still being written.

Dynamic

Networks are incredibly dynamic and conditions can change rapidly. During a
call you may send and receive hundreds of thousands of packets. Those packets
will be traveling through multiple hops. Those hops will be shared by millions
of other users. Even in your local network you could have HD movies being
downloaded or maybe a device decides to download a software update.

Having a good call isn’t as simple as measuring your network on startup. You
need to be constantly evaluating. You also need to handle all the different
behaviors that come from a multitude of network hardware and software.

Solving Packet Loss
Handling packet loss is the first problem to solve. There are multiple ways to
solve it, each with their own benefits. It depends on what you are sending and
how latency tolerant you are. It is also important to note that not all packet
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loss is fatal. Losing some video might not be a problem, the human eye might
not even able to perceive it. Losing a users text messages are fatal.

Let’s say you send 10 packets, and packets 5 and 6 are lost. Here are the ways
you can solve it.

Acknowledgments

Acknowledgments is when the receiver notifies the sender of every packet they
have received. The sender is aware of packet loss when it gets an acknowledgment
for a packet twice that isn’t final. When the sender gets an ACK for packet 4
twice, it knows that packet 5 has not been seen yet.

Selective Acknowledgments

Selective Acknowledgments is an improvement upon Acknowledgments. A re-
ceiver can send a SACK that acknowledges multiple packets and notifies the sender
of gaps. Now the sender can get a SACK for packet 4 and 7. It then knows it
needs to re-send packets 5 and 6.

Negative Acknowledgments

Negative Acknowledgments solve the problem the opposite way. Instead of
notifying the sender what it has received, the receiver notifies the sender what
has been lost. In our case a NACK will be sent for packets 5 and 6. The sender
only knows packets the receiver wishes to have sent again.

Forward Error Correction

Forward Error Correction fixes packet loss pre-emptively. The sender sends
redundant data, meaning a lost packet doesn’t affect the final stream. One
popular algorithm for this is Reed–Solomon error correction.

This reduces the latency/complexity of sending and handling Acknowledgments.
Forward Error Correction is a waste of bandwidth if the network you are in has
zero loss.

Solving Jitter
Jitter is present in most networks. Even inside a LAN you have many devices
sending data at fluctuating rates. You can easily observe jitter by pinging
another device with the ping command and noticing the fluctuations in round-
trip latency.

To solve jitter, clients use a JitterBuffer. The JitterBuffer ensures a steady
delivery time of packets. The downside is that JitterBuffer adds some latency
to packets that arrive early. The upside is that late packets don’t cause jitter.
Imagine that during a call, you see the following packet arrival times:
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* time=1.46 ms
* time=1.93 ms
* time=1.57 ms
* time=1.55 ms
* time=1.54 ms
* time=1.72 ms
* time=1.45 ms
* time=1.73 ms
* time=1.80 ms

In this case, around 1.8 ms would be a good choice. Packets that arrive late
will use our window of latency. Packets that arrive early will be delayed a bit
and can fill the window depleted by late packets. This means we no longer have
stuttering and provide a smooth delivery rate for the client.

JitterBuffer operation

Figure 8: JitterBuffer

Every packet gets added to the jitter buffer as soon as it is received. Once there
are enough packets to reconstruct the frame, packets that make up the frame are
released from the buffer and emitted for decoding. The decoder, in turn, decodes
and draws the video frame on the user’s screen. Since the jitter buffer has a
limited capacity, packets that stay in the buffer for too long will be discarded.

Read more on how video frames are converted to RTP packets, and why recon-
struction is necessary in the media communication chapter.

jitterBufferDelay provides a great insight into your network performance and
its influence on playback smoothness. It is a part of WebRTC statistics API
relevant to the receiver’s inbound stream. The delay defines the amount of time
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video frames spend in the jitter buffer before being emitted for decoding. A long
jitter buffer delay means your network is highly congested.

Detecting Congestion
Before we can even resolve congestion, we need to detect it. To detect it we
use a congestion controller. This is a complicated subject, and is still rapidly
changing. New algorithms are still being published and tested. At a high level
they all operate the same. A congestion controller provides bandwidth estimates
given some inputs. These are some possible inputs:

• Packet Loss - Packets are dropped as the network becomes congested.
• Jitter - As network equipment becomes more overloaded packets queuing

will cause the times to be erratic.
• Round Trip Time - Packets take longer to arrive when congested. Unlike

jitter, the Round Trip Time just keeps increasing.
• Explicit Congestion Notification - Newer networks may tag packets

as at risk for being dropped to relieve congestion.

These values need to be measured continuously during the call. Utilization of the
network may increase or decrease, so the available bandwidth could constantly
be changing.

Resolving Congestion
Now that we have an estimated bandwidth we need to adjust what we are
sending. How we adjust depends on what kind of data we want to send.

Sending Slower

Limiting the speed at which you send data is the first solution to preventing
congestion. The Congestion Controller gives you an estimate, and it is the
sender’s responsibility to rate limit.

This is the method used for most data communication. With protocols like TCP
this is all done by the operating system and completely transparent to both
users and developers.

Sending Less

In some cases we can send less information to satisfy our limits. We also have
hard deadlines on the arrival of our data, so we can’t send slower. These are the
constraints that Real-time media falls under.

If we don’t have enough bandwidth available, we can lower the quality of video
we send. This requires a tight feedback loop between your video encoder and
congestion controller.
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Media Communication
What do I get from WebRTC’s media communication?
WebRTC allows you to send and receive an unlimited amount of audio and video
streams. You can add and remove these streams at anytime during a call. These
streams could all be independent, or they could be bundled together! You could
send a video feed of your desktop, and then include audio and video from your
webcam.

The WebRTC protocol is codec agnostic. The underlying transport supports
everything, even things that don’t exist yet! However, the WebRTC Agent you
are communicating with may not have the necessary tools to accept it.

WebRTC is also designed to handle dynamic network conditions. During a call
your bandwidth might increase, or decrease. Maybe you suddenly experience lots
of packet loss. The protocol is designed to handle all of this. WebRTC responds
to network conditions and tries to give you the best experience possible with the
resources available.

How does it work?
WebRTC uses two preexisting protocols RTP and RTCP, both defined in RFC
1889.

RTP (Real-time Transport Protocol) is the protocol that carries the media. It
was designed to allow for real-time delivery of video. It does not stipulate any
rules around latency or reliability, but gives you the tools to implement them.
RTP gives you streams, so you can run multiple media feeds over one connection.
It also gives you the timing and ordering information you need to feed a media
pipeline.

RTCP (RTP Control Protocol) is the protocol that communicates metadata
about the call. The format is very flexible and allows you to add any metadata
you want. This is used to communicate statistics about the call. It is also
used to handle packet loss and to implement congestion control. It gives you
the bi-directional communication necessary to respond to changing network
conditions.

Latency vs Quality
Real-time media is about making trade-offs between latency and quality. The
more latency you are willing to tolerate, the higher quality video you can expect.

Real World Limitations

These constraints are all caused by the limitations of the real world. They are
all characteristics of your network that you will need to overcome.
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Video is Complex

Transporting video isn’t easy. To store 30 minutes of uncompressed 720 8-bit
video you need about 110 GB. With those numbers, a 4-person conference call
isn’t going to happen. We need a way to make it smaller, and the answer is
video compression. That doesn’t come without downsides though.

Video 101
We aren’t going to cover video compression in depth, but just enough to under-
stand why RTP is designed the way it is. Video compression encodes video into
a new format that requires fewer bits to represent the same video.

Lossy and Lossless compression

You can encode video to be lossless (no information is lost) or lossy (information
may be lost). Because lossless encoding requires more data to be sent to a peer,
making for a higher latency stream and more dropped packets, RTP typically
uses lossy compression even though the video quality won’t be as good.

Intra and Inter frame compression

Video compression comes in two types. The first is intra-frame. Intra-frame
compression reduces the bits used to describe a single video frame. The same
techniques are used to compress still pictures, like the JPEG compression method.

The second type is inter-frame compression. Since video is made up of many
pictures we look for ways to not send the same information twice.

Inter-frame types

You then have three frame types:

• I-Frame - A complete picture, can be decoded without anything else.
• P-Frame - A partial picture, containing only changes from the previous

picture.
• B-Frame - A partial picture, is a modification of previous and future

pictures.

The following is visualization of the three frame types.

Figure 9: Frame types
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Video is delicate

Video compression is incredibly stateful, making it difficult to transfer over the
internet. What happens If you lose part of an I-Frame? How does a P-Frame
know what to modify? As video compression gets more complex, this is becoming
even more of a problem. Luckily RTP and RTCP have the solution.

RTP
Packet Format

Every RTP packet has the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X| CC |M| PT | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Synchronization Source (SSRC) identifier |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| Contributing Source (CSRC) identifiers |
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Version (V) Version is always 2

Padding (P) Padding is a bool that controls if the payload has padding.

The last byte of the payload contains a count of how many padding bytes were
added.

Extension (X) If set, the RTP header will have extensions. This is described
in greater detail below.

CSRC count (CC) The amount of CSRC identifiers that follow after the SSRC,
and before the payload.

Marker (M) The marker bit has no pre-set meaning, and can be used however
the user likes.

In some cases it is set when a user is speaking. It is also commonly used to mark
a keyframe.
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Payload Type (PT) Payload Type is a unique identifier for what codec is
being carried by this packet.

For WebRTC the Payload Type is dynamic. VP8 in one call may be different
from another. The offerer in the call determines the mapping of Payload Types
to codecs in the Session Description.

Sequence Number Sequence Number is used for ordering packets in a stream.
Every time a packet is sent the Sequence Number is incremented by one.

RTP is designed to be useful over lossy networks. This gives the receiver a way
to detect when packets have been lost.

Timestamp The sampling instant for this packet. This is not a global clock,
but how much time has passed in the media stream. Several RTP packets can
have the same timestamp if they for example are all part of the same video
frame.

Synchronization Source (SSRC) An SSRC is the unique identifier for this
stream. This allows you to run multiple streams of media over a single RTP
stream.

Contributing Source (CSRC) A list that communicates what SSRCes con-
tributed to this packet.

This is commonly used for talking indicators. Let’s say server side you combined
multiple audio feeds into a single RTP stream. You could then use this field to
say “Input stream A and C were talking at this moment”.

Payload The actual payload data. Might end with the count of how many
padding bytes were added, if the padding flag is set.

Extensions

RTCP
Packet Format

Every RTCP packet has the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P| RC | PT | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Version (V) Version is always 2.

Padding (P) Padding is a bool that controls if the payload has padding.

The last byte of the payload contains a count of how many padding bytes were
added.

Reception Report Count (RC) The number of reports in this packet. A
single RTCP packet can contain multiple events.

Packet Type (PT) Unique Identifier for what type of RTCP Packet this is.
A WebRTC Agent doesn’t need to support all these types, and support between
Agents can be different. These are the ones you may commonly see though:

• 192 - Full INTRA-frame Request (FIR)
• 193 - Negative ACKnowledgements (NACK)
• 200 - Sender Report
• 201 - Receiver Report
• 205 - Generic RTP Feedback
• 206 - Payload Specific Feedback

The significance of these packet types will be described in greater detail below.

Full INTRA-frame Request (FIR) and Picture Loss Indication (PLI)

Both FIR and PLI messages serve a similar purpose. These messages request a
full key frame from the sender. PLI is used when partial frames were given to
the decoder, but it was unable to decode them. This could happen because you
had lots of packet loss, or maybe the decoder crashed.

According to RFC 5104, FIR shall not be used when packets or frames are lost.
That is PLIs job. FIR requests a key frame for reasons other than packet loss -
for example when a new member enters a video conference. They need a full
key frame to start decoding video stream, the decoder will be discarding frames
until key frame arrives.

It is a good idea for a receiver to request a full key frame right after connecting,
this minimizes the delay between connecting, and an image showing up on the
user’s screen.

PLI packets are a part of Payload Specific Feedback messages.

In practice, software that is able to handle both PLI and FIR packets will act
the same way in both cases. It will send a signal to the encoder to produce a
new full key frame.
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Negative Acknowledgment

A NACK requests that a sender re-transmits a single RTP packet. This is usually
caused by an RTP packet getting lost, but could also happen because it is late.

NACKs are much more bandwidth efficient than requesting that the whole frame
get sent again. Since RTP breaks up packets into very small chunks, you are
really just requesting one small missing piece. The receiver crafts an RTCP
message with the SSRC and Sequence Number. If the sender does not have this
RTP packet available to re-send, it just ignores the message.

Sender and Receiver Reports

These reports are used to send statistics between agents. This communicates
the amount of packets actually received and jitter.

The reports can be used for diagnostics and congestion control.

How RTP/RTCP solve problems together
RTP and RTCP then work together to solve all the problems caused by networks.
These techniques are still constantly changing!

Forward Error Correction

Also known as FEC. Another method of dealing with packet loss. FEC is when
you send the same data multiple times, without it even being requested. This is
done at the RTP level, or even lower with the codec.

If the packet loss for a call is steady then FEC is a much lower latency solution
than NACK. The round trip time of having to request, and then re-transmit the
missing packet can be significant for NACKs.

Adaptive Bitrate and Bandwidth Estimation

As discussed in the Real-time networking chapter, networks are unpredictable
and unreliable. Bandwidth availability can change multiple times throughout
a session. It is not uncommon to see available bandwidth change dramatically
(orders of magnitude) within a second.

The main idea is to adjust encoding bitrate based on predicted, current, and
future available network bandwidth. This ensures that video and audio signal of
the best possible quality is transmitted, and the connection does not get dropped
because of network congestion. Heuristics that model the network behavior and
tries to predict it is known as Bandwidth estimation.

There is a lot of nuance to this, so let’s explore in greater detail.
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Identifying and Communicating Network Status
RTP/RTCP runs over all types of different networks, and as a result, it’s
common for some communication to be dropped on its way from the sender
to the receiver. Being built on top of UDP, there is no built-in mechanism for
packet retransmission, let alone handling congestion control.

To provide users the best experience, WebRTC must estimate qualities about
the network path, and adapt to how those qualities change over time. The key
traits to monitor include: available bandwidth (in each direction, as it may not
be symmetric), round trip time, and jitter (fluctuations in round trip time). It
needs to account for packet loss, and communicate changes in these properties
as network conditions evolve.

There are two primary objectives for these protocols:

1. Estimate the available bandwidth (in each direction) supported by the
network.

2. Communicate network characteristics between sender and receiver.

RTP/RTCP has three different approaches to address this problem. They all
have their pros and cons, and generally each generation has improved over
its predecessors. Which implementation you use will depend primarily on the
software stack available to your clients and the libraries available for building
your application.

Receiver Reports / Sender Reports

The first implementation is the pair of Receiver Reports and its complement,
Sender Reports. These RTCP messages are defined in RFC 3550, and are
responsible for communicating network status between endpoints. Receiver
Reports focuses on communicating qualities about the network (including packet
loss, round-trip time, and jitter), and it pairs with other algorithms that are
then responsible for estimating available bandwidth based on these reports.

Sender and Receiver reports (SR and RR) together paint a picture of the network
quality. They are sent on a schedule for each SSRC, and they are the inputs
used when estimating available bandwidth. Those estimates are made by the
sender after receiving the RR data, containing the following fields:

• Fraction Lost - What percentage of packets have been lost since the last
Receiver Report.

• Cumulative Number of Packets Lost - How many packets have been
lost during the entire call.

• Extended Highest Sequence Number Received - What was the last
Sequence Number received, and how many times has it rolled over.

• Interarrival Jitter - The rolling Jitter for the entire call.
• Last Sender Report Timestamp - Last known time on sender, used

for round-trip time calculation.
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SR and RR work together to compute round-trip time.

The sender includes its local time, sendertime1 in SR. When the receiver gets an
SR packet, it sends back RR. Among other things, the RR includes sendertime1
just received from the sender. There will be a delay between receiving the SR
and sending the RR. Because of that, the RR also includes a “delay since last
sender report” time - DLSR. The DLSR is used to adjust the round-trip time
estimate later on in the process. Once the sender receives the RR it subtracts
sendertime1 and DLSR from the current time sendertime2. This time delta is
called round-trip propagation delay or round-trip time.

rtt = sendertime2 - sendertime1 - DLSR

Round-trip time in plain English: - I send you a message with my clock’s current
reading, say it is 4:20pm, 42 seconds and 420 milliseconds. - You send me this
same timestamp back. - You also include the time elapsed from reading my
message to sending the message back, say 5 milliseconds. - Once I receive the
time back, I look at the clock again. - Now my clock says 4:20pm, 42 seconds
690 milliseconds. - It means that it took 265 milliseconds (690 - 420 - 5) to reach
you and return back to me. - Therefore, the round-trip time is 265 milliseconds.

TMMBR, TMMBN, REMB and TWCC, paired with GCC

Google Congestion Control (GCC) The Google Congestion Control (GCC)
algorithm (outlined in draft-ietf-rmcat-gcc-02) addresses the challenge of band-
width estimation. It pairs with a variety of other protocols to facilitate the
associated communication requirements. Consequently, it is well-suited to run
on either the receiving side (when run with TMMBR/TMMBN or REMB) or
on the sending side (when run with TWCC).

To arrive at estimates for available bandwidth, GCC focuses on packet loss and
fluctuations in frame arrival time as its two primary metrics. It runs these metrics
through two linked controllers: the loss-based controller and the delay-based
controller.

GCC’s first component, the loss-based controller, is simple:

• If packet loss is above 10%, the bandwidth estimate is reduced.
• If packet loss is between 2-10%, the bandwidth estimate stays the same.
• If packet loss is below 2%, the bandwidth estimate is increased.

Packet loss measurements are taken frequently. Depending on the paired com-
munication protocol, packet loss may either be explicitly communicated (as with
TWCC) or inferred (as with TMMBR/TMMBN and REMB). These percentages
are evaluated over time windows of around one second.

The delay-based controller cooperates with the loss-based controller, and looks
at the variations in packet arrival time. This delay-based controller aims to
identify when network links are becoming increasingly congested, and may reduce
bandwidth estimates even before packet loss occurs. The theory is that the
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Figure 10: Round-trip time
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busiest network interface along the path will continue queuing up packets until
the interface runs out of capacity inside its buffers. If that interface continues to
receive more traffic than it is able to send, it will be forced to drop all packets
that it cannot fit into its buffer space. This type of packet loss is particularly
disruptive for low-latency/real-time communication, but it can also degrade
throughput for all communication over that link and should ideally be avoided.
Thus, GCC tries to figure out if network links are growing larger and larger
queue depths before packet loss actually occurs. It will reduce the bandwidth
usage if it observes increased queuing delays over time.

To achieve this, GCC tries to infer increases in queue depth by measuring
subtle increases in round trip time. It records frames’ “inter-arrival time”, t(i)
- t(i-1): the difference in arrival time of two groups of packets (generally,
consecutive video frames). These packet groups frequently depart at regular
time intervals (e.g. every 1/24 seconds for a 24 fps video). As a result, measuring
inter-arrival time is then as simple as recording the time difference between the
start of the first packet group (i.e. frame) and the first frame of the next.

In the diagram below, the median inter-packet delay increase is +20 msec, a
clear indicator of network congestion.

Figure 11: TWCC with delay

If inter-arrival time increases over time, that is presumed evidence of increased
queue depth on connecting network interfaces and considered to be network
congestion. (Note: GCC is smart enough to control these measurements for
fluctuations in frame byte sizes.) GCC refines its latency measurements using a
Kalman filter and takes many measurements of network round-trip times (and its
variations) before flagging congestion. One can think of GCC’s Kalman filter as
taking the place of a linear regression: helping to make accurate predictions even
when jitter adds noise into the timing measurements. Upon flagging congestion,
GCC will reduce the available bitrate. Alternatively, under steady network
conditions, it can slowly increase its bandwidth estimates to test out higher load
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values.

TMMBR, TMMBN, and REMB For TMMBR/TMMBN and REMB, the
receiving side first estimates available inbound bandwidth (using a protocol
such as GCC), and then communicates these bandwidth estimates to the remote
senders. They do not need to exchange details about packet loss or other qualities
about network congestion because operating on the receiving side allows them to
measure inter-arrival time and packet loss directly. Instead, TMMBR, TMMBN,
and REMB exchange just the bandwidth estimates themselves:

• Temporary Maximum Media Stream Bit Rate Request - A man-
tissa/exponent of a requested bitrate for a single SSRC.

• Temporary Maximum Media Stream Bit Rate Notification - A
message to notify that a TMMBR has been received.

• Receiver Estimated Maximum Bitrate - A mantissa/exponent of a
requested bitrate for the entire session.

TMMBR and TMMBN came first and are defined in RFC 5104. REMB came
later, there was a draft submitted in draft-alvestrand-rmcat-remb, but it was
never standardized.

An example session that uses REMB might behave like the following:

Figure 12: REMB
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This method works great on paper. The Sender receives estimation from the
receiver, sets encoder bitrate to the received value. Tada! We’ve adjusted to the
network conditions.

However in practice, the REMB approach has multiple drawbacks.

Encoder inefficiency is the first. When you set a bitrate for the encoder, it won’t
necessarily output the exact bitrate you requested. Encoding may output more
or fewer bits, depending on the encoder settings and the frame being encoded.

For example, using the x264 encoder with tune=zerolatency can significantly
deviate from the specified target bitrate. Here is a possible scenario:

• Let’s say we start off by setting the bitrate to 1000 kbps.
• The encoder outputs only 700 kbps, because there is not enough high

frequency features to encode. (AKA - “staring at a wall”.)
• Let’s also imagine that the receiver gets the 700 kbps video at zero packet

loss. It then applies REMB rule 1 to increase the incoming bitrate by 8%.
• The receiver sends a REMB packet with a 756 kbps suggestion (700 kbps *

1.08) to the sender.
• The sender sets the encoder bitrate to 756 kbps.
• The encoder outputs an even lower bitrate.
• This process continues to repeat itself, lowering the bitrate to the absolute

minimum.

You can see how this would cause heavy encoder parameter tuning, and surprise
users with unwatchable video even on a great connection.

Transport Wide Congestion Control Transport Wide Congestion Control
is the latest development in RTCP network status communication. It is defined
in draft-holmer-rmcat-transport-wide-cc-extensions-01, but has also never been
standardized.

TWCC uses a quite simple principle:

With REMB, the receiver instructs the sending side in the available download
bitrate. It uses precise measurements about inferred packet loss and data only it
has about inter-packet arrival time.

TWCC is almost a hybrid approach between the SR/RR and REMB generations
of protocols. It brings the bandwidth estimates back to the sender side (similar
to SR/RR), but its bandwidth estimate technique more closely resembles the
REMB generation.

With TWCC, the receiver lets the sender know the arrival time of each packet.
This is enough information for the sender to measure inter-packet arrival delay
variation, as well as identifying which packets were dropped or arrived too late to
contribute to the audio/video feed. With this data being exchanged frequently,
the sender able to quickly adjust to changing network conditions and vary its
output bandwidth using an algorithm such GCC.
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Figure 13: TWCC
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The sender keeps track of sent packets, their sequence numbers, sizes and
timestamps. When the sender receives RTCP messages from the receiver, it
compares the send inter-packet delays with the receive delays. If the receive
delays increase, it signals network congestion, and the sender must take corrective
measures.

By providing the sender with the raw data, TWCC provides an excellent view
into real time network conditions: - Almost instant packet loss behavior, down
to the individual lost packets - Accurate send bitrate - Accurate receive bitrate
- Jitter measurement - Differences between send and receive packet delays -
Description of how the network tolerated bursty or steady bandwidth delivery

One of the most significant contributions of TWCC is the flexibility it affords to
WebRTC developers. By consolidating the congestion control algorithm to the
sending side, it allows simple client code that can be widely used and requires
minimal enhancements over time. The complex congestion control algorithms
can then be iterated more quickly on the hardware they directly control (like the
Selective Forwarding Unit, discussed in section 8). In the case of browsers and
mobile devices, this means those clients can benefit from algorithm enhancements
without having to await standardization or browser updates (which can take
quite a long time to be widely available).

Bandwidth Estimation Alternatives
The most deployed implementation is “A Google Congestion Control Algorithm
for Real-Time Communication” defined in draft-alvestrand-rmcat-congestion.

There are several alternatives to GCC, for example NADA: A Unified Conges-
tion Control Scheme for Real-Time Media and SCReAM - Self-Clocked Rate
Adaptation for Multimedia.

Data Communication
What do I get from WebRTC’s data communication?
WebRTC provides data channels for data communication. Between two peers
you can open 65,534 data channels. A data channel is datagram based, and each
has its own durability settings. By default, each data channel has guaranteed
ordered delivery.

If you are approaching WebRTC from a media background data channels might
seem wasteful. Why do I need this whole subsystem when I could just use HTTP
or WebSockets?

The real power with data channels is that you can configure them to behave like
UDP with unordered/lossy delivery. This is necessary for low latency and high
performance situations. You can measure the backpressure and ensure you are
only sending as much as your network supports.
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How does it work?
WebRTC uses the Stream Control Transmission Protocol (SCTP), defined in
RFC 4960. SCTP is a transport layer protocol that was intended as an alternative
to TCP or UDP. For WebRTC we use it as an application layer protocol which
runs over our DTLS connection.

SCTP gives you streams and each stream can be configured independently.
WebRTC data channels are just thin abstractions around them. The settings
around durability and ordering are just passed right into the SCTP Agent.

Data channels have some features that SCTP can’t express, like channel labels.
To solve that WebRTC uses the Data Channel Establishment Protocol (DCEP)
which is defined in RFC 8832. DCEP defines a message to communicate the
channel label and protocol.

DCEP
DCEP only has two messages DATA_CHANNEL_OPEN and DATA_CHANNEL_ACK. For
each data channel that is opened the remote must respond with an ack.

DATA_CHANNEL_OPEN

This message is sent by the WebRTC Agent that wishes to open a channel.

Packet Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Channel Type | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reliability Parameter |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Length | Protocol Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Label /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Protocol /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Message Type Message Type is a static value of 0x03.
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Channel Type Channel Type controls durability/ordering attributes of the
channel. It may have the following values:

• DATA_CHANNEL_RELIABLE (0x00) - No messages are lost and will arrive in
order

• DATA_CHANNEL_RELIABLE_UNORDERED (0x80) - No messages are lost, but
they may arrive out of order.

• DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT (0x01) - Messages may be lost
after trying the requested amount of times, but they will arrive in order.

• DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED (0x81) - Messages
may be lost after trying the requested amount of times and may arrive out
of order.

• DATA_CHANNEL_PARTIAL_RELIABLE_TIMED (0x02) - Messages may be lost
if they don’t arrive in the requested amount of time, but they will arrive
in order.

• DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED (0x82) - Messages
may be lost if they don’t arrive in the requested amount of time and may
arrive out of order.

Priority The priority of the data channel. Data channels having a higher
priority will be scheduled first. Large lower-priority user messages will not delay
the sending of higher-priority user messages.

Reliability Parameter If the data channel type is DATA_CHANNEL_PARTIAL_RELIABLE,
the suffixes configures the behavior:

• REXMIT - Defines how many times the sender will re-send the message
before giving up.

• TIMED - Defines for how long time (in ms) the sender will re-send the
message before giving up.

Label A UTF-8-encoded string containing the name of the data channel. This
string may be empty.

Protocol If this is an empty string, the protocol is unspecified. If it is a
non-empty string, it should specify a protocol registered in the “WebSocket
Subprotocol Name Registry”, defined in RFC 6455.

DATA_CHANNEL_ACK

This message is sent by the WebRTC Agent to acknowledge that this data
channel has been opened.

Packet Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type |
+-+-+-+-+-+-+-+-+

Stream Control Transmission Protocol
SCTP is the real power behind WebRTC data channels. It provides all these
features of the data channel:

• Multiplexing
• Reliable delivery using a TCP-like retransmission mechanism
• Partial-reliability options
• Congestion Avoidance
• Flow Control

To understand SCTP we will explore it in three parts. The goal is that you will
know enough to debug and learn the deep details of SCTP on your own after
this chapter.

Concepts
SCTP is a feature rich protocol. This section is only going to cover the parts
of SCTP that are used by WebRTC. Features in SCTP that are not used by
WebRTC include multi-homing and path selection.

With over twenty years of development SCTP can be hard to fully grasp.

Association

Association is the term used for an SCTP Session. It is the state that is shared
between two SCTP Agents while they communicate.

Streams

A stream is one bi-directional sequence of user data. When you create a data
channel you are actually just creating an SCTP stream. Each SCTP Association
contains a list of streams. Each stream can be configured with different reliability
types.

WebRTC only allows you to configure on stream creation, but SCTP actually
allows changing the configuration at anytime.

Datagram Based

SCTP frames data as datagrams and not as a byte stream. Sending and receiving
data feels like using UDP instead of TCP. You don’t need to add any extra code
to transfer multiple files over one stream.

SCTP messages don’t have size limits like UDP. A single SCTP message can be
multiple gigabytes in size.
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Chunks

The SCTP protocol is made up of chunks. There are many different types of
chunks. These chunks are used for all communication. User data, connection
initialization, congestion control, and more are all done via chunks.

Each SCTP packet contains a list of chunks. So in one UDP packet you can
have multiple chunks carrying messages from different streams.

Transmission Sequence Number

The Transmission Sequence Number (TSN) is a global unique identifier for DATA
chunks. A DATA chunk is what carries all the messages a user wishes to send.
The TSN is important because it helps a receiver determine if packets are lost
or out of order.

If the receiver notices a missing TSN, it doesn’t give the data to the user until it
is fulfilled.

Stream Identifier

Each stream has a unique identifier. When you create a data channel with an
explicit ID, it is actually just passed right into SCTP as the stream identifier. If
you don’t pass an ID the stream identifier is chosen for you.

Payload Protocol Identifier

Each DATA chunk also has a Payload Protocol Identifier (PPID). This is used
to uniquely identify what type of data is being exchanged. SCTP has many
PPIDs, but WebRTC is only using the following five:

• WebRTC DCEP (50) - DCEP messages.
• WebRTC String (51) - DataChannel string messages.
• WebRTC Binary (53) - DataChannel binary messages.
• WebRTC String Empty (56) - DataChannel string messages with 0 length.
• WebRTC Binary Empty (57) - DataChannel binary messages with 0 length.

Protocol
The following are some of the chunks used by the SCTP protocol. This is not
an exhaustive demonstration. This provides enough structures for the state
machine to make sense.

Each Chunk starts with a type field. Before a list of chunks, you will also have
a header.

DATA Chunk

0 1 2 3
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0 | Reserved|U|B|E| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TSN |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream Identifier | Stream Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Protocol Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ User Data /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The DATA chunk is how all user data is exchanged. When you send anything
over the data channel, this is how it is exchanged.

U bit is set if this is an unordered packet. We can ignore the Stream Sequence
Number.

B and E are the beginning and end bits. If you want to send a message that is
too large for one DATA chunk it needs to be fragmented into multiple DATA
chunks sent in separate packets. With the B and E bit and Sequence Numbers
SCTP is able to express this.

• B=1, E=0 - First piece of a fragmented user message.
• B=0, E=0 - Middle piece of a fragmented user message.
• B=0, E=1 - Last piece of a fragmented user message.
• B=1, E=1 - Unfragmented message.

TSN is the Transmission Sequence Number. It is the global unique identifier
for this DATA chunk. After 4,294,967,295 chunks this will wrap around to 0.
The TSN is incremented for every chunk in a fragmented user message so that
the receiver knows how to order the received chunks to reconstruct the original
message.

Stream Identifier is the unique identifier for the stream this data belongs to.

Stream Sequence Number is a 16-bit number incremented every user message
and included in the DATA message chunk header. After 65535 messages this will
wrap around to 0. This number is used to decide the message order of delivery
to the receiver if U is set to 0. Similar to the TSN, except the Stream Sequence
Number is only incremented for each message as a whole and not each individual
DATA chunk.

Payload Protocol Identifier is the type of data that is flowing through this
stream. For WebRTC, it is going to be DCEP, String or Binary.

User Data is what you are sending. All data you send via a WebRTC data
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channel is transmitted via a DATA chunk.

INIT Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Chunk Flags | Chunk Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Initiate Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertised Receiver Window Credit (a_rwnd) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Outbound Streams | Number of Inbound Streams |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Initial TSN |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Optional/Variable-Length Parameters /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The INIT chunk starts the process of creating an association.

Initiate Tag is used for cookie generation. Cookies are used for Man-In-The-
Middle and Denial of Service protection. They are described in greater detail in
the state machine section.

Advertised Receiver Window Credit is used for SCTP’s Congestion Control.
This communicates how large of a buffer the receiver has allocated for this
association.

Number of Outbound/Inbound Streams notifies the remote of how many
streams this agent supports.

Initial TSN is a random uint32 to start the local TSN at.

Optional Parameters allows SCTP to introduce new features to the protocol.

SACK Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 |Chunk Flags | Chunk Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cumulative TSN Ack |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertised Receiver Window Credit (a_rwnd) |
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Gap Ack Blocks = N | Number of Duplicate TSNs = X |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gap Ack Block #1 Start | Gap Ack Block #1 End |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ /
\ ... \
/ /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gap Ack Block #N Start | Gap Ack Block #N End |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Duplicate TSN 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ /
\ ... \
/ /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Duplicate TSN X |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The SACK (Selective Acknowledgment) Chunk is how a receiver notifies a sender
it has gotten a packet. Until a sender gets a SACK for a TSN it will re-send
the DATA chunk in question. A SACK does more than just update the TSN
though.

Cumulative TSN ACK the highest TSN that has been received.

Advertised Receiver Window Credit receiver buffer size. The receiver may
change this during the session if more memory becomes available.

Ack Blocks TSNs that have been received after the Cumulative TSN ACK. This
is used if there is a gap in packets delivered. Let’s say DATA chunks with TSNs
100, 102, 103 and 104 are delivered. The Cumulative TSN ACK would be 100,
but Ack Blocks could be used to tell the sender it doesn’t need to resend 102,
103 or 104.

Duplicate TSN informs the sender that it has received the following DATA
chunks more than once.

HEARTBEAT Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Chunk Flags | Heartbeat Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Heartbeat Information TLV (Variable-Length) /
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\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The HEARTBEAT Chunk is used to assert the remote is still responding. Useful
if you aren’t sending any DATA chunks and need to keep a NAT mapping open.

ABORT Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 6 |Reserved |T| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ /
\ Zero or more Error Causes \
/ /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An ABORT chunk abruptly shuts down the association. Used when one side
enters an error state. Gracefully ending the connection uses the SHUTDOWN
chunk.

SHUTDOWN Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 7 | Chunk Flags | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cumulative TSN Ack |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The SHUTDOWN Chunk starts a graceful shutdown of the SCTP association.
Each agent informs the remote of the last TSN it sent. This ensures that
no packets are lost. WebRTC doesn’t do a graceful shutdown of the SCTP
association. You need to tear down each data channel yourself to handle it
gracefully.

Cumulative TSN ACK is the last TSN that was sent. Each side knows not to
terminate until they have received the DATA chunk with this TSN.

ERROR Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 9 | Chunk Flags | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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\ \
/ One or more Error Causes /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An ERROR chunk is used to notify the remote SCTP Agent that a non-fatal
error has occurred.

FORWARD TSN Chunk

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 192 | Flags = 0x00 | Length = Variable |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| New Cumulative TSN |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream-1 | Stream Sequence-1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ /
/ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream-N | Stream Sequence-N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The FORWARD TSN chunk moves the global TSN forward. SCTP does this, so
you can skip some packets you don’t care about anymore. Let’s say you send 10
11 12 13 14 15 and these packets are only valid if they all arrive. This data is
also real-time sensitive, so if it arrives late it isn’t useful.

If you lose 12 and 13 there is no reason to send 14 and 15! SCTP uses the
FORWARD TSN chunk to achieve that. It tells the receiver that 14 and 15 aren’t
going to be delivered anymore.

New Cumulative TSN this is the new TSN of the connection. Any packets before
this TSN will not be retained.

Stream and Stream Sequence are used to jump the Stream Sequence Number
number ahead. Refer back to the DATA Chunk for the significance of this field.

State Machine
These are some interesting parts of the SCTP state machine. WebRTC doesn’t
use all the features of the SCTP state machine, so we have excluded those parts.
We also have simplified some components to make them understandable on their
own.
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Connection Establishment Flow

The INIT and INIT ACK chunks are used to exchange the capabilities and
configurations of each peer. SCTP uses a cookie during the handshake to
validate the peer it is communicating with. This is to ensure that the handshake
is not intercepted and to prevent DoS attacks.

The INIT ACK chunk contains the cookie. The cookie is then returned to its
creator using the COOKIE ECHO. If cookie verification is successful the COOKIE
ACK is sent and DATA chunks are ready to be exchanged.

Figure 14: Connection establishment

Connection Teardown Flow

SCTP uses the SHUTDOWN chunk. When an agent receives a SHUTDOWN chunk it
will wait until it receives the requested Cumulative TSN ACK. This allows a user
to ensure that all data is delivered even if the connection is lossy.

Keep-Alive Mechanism

SCTP uses the HEARTBEAT REQUEST and HEARTBEAT ACK Chunks to keep the
connection alive. These are sent on a configurable interval. SCTP also performs
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an exponential backoff if the packet hasn’t arrived.

The HEARTBEAT chunk also contains a time value. This allows two associations
to compute trip time between two agents.

Applied WebRTC
Now that you know how WebRTC works it is time to build with it! This chapter
explores what people are building with WebRTC, and how they are building
it. You will learn all the interesting things that are happening with WebRTC.
The power of WebRTC comes at a cost. Building production grade WebRTC
services is challenging. This chapter will try to explain those challenges before
you hit them.

By Use Case
Many think WebRTC is just a technology for conferencing in the web browser.
It is so much more than that though! WebRTC is used in a wide range of
applications. New use cases are showing up all the time. In this chapter we will
list some common ones and how WebRTC is revolutionizing them.

Conferencing

Conferencing is the original use case for WebRTC. The protocol contains a few
necessary features that no other protocol offers in the browser. You could build
a conferencing system with WebSockets and it may work in optimal conditions.
If you want something that can be deployed in real world network conditions,
WebRTC is the best choice.

WebRTC provides congestion control and adaptive bitrate for media. As the
conditions of the network change, users will still get the best experience possible.
Developers don’t have to write any additional code to measure these conditions
either.

Participants can send and receive multiple streams. They can also add and
remove those streams at any time during the call. Codecs are negotiated as well.
All of this functionality is provided by the browser, no custom code is required
to be written by the developer.

Conferencing also benefits from data channels. Users can send metadata or share
documents. You can create multiple streams and configure them if you need
performance more than reliability.

Broadcasting

Lots of new projects are starting to appear in the broadcast space that use
WebRTC. The protocol has a lot to offer for both the publisher and consumer of
media.
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WebRTC being in the browser makes it easy for users to publish video. It
removes the requirement for users to download a new client. Any platform that
has a web browser can publish video. Publishers can then send multiple tracks
and modify or remove them at anytime. This is a huge improvement over legacy
protocols that only allowed one audio or one video track per connection.

WebRTC gives developers greater control over the latency versus quality trade-
offs. If it is more important that latency never exceeds a certain threshold, and
you are willing to tolerate some decoding artifacts. You can configure the viewer
to play media as soon as it arrives. With other protocols that run over TCP,
that isn’t as easy. In the browser you can request data and that is it.

Remote Access

Remote Access is when you remotely access another computer via WebRTC.
You could have complete control of the remote host, or maybe just a single
application. This is great for running computationally expensive tasks when the
local hardware can’t do it. Like running a new video game, or CAD software.
WebRTC was able to revolutionize the space in three ways.

WebRTC can be used to remotely access a host that isn’t world routable. With
NAT Traversal you can access a computer that is only available via STUN. This
is great for security and privacy. Your users don’t have to route video through
an ingest, or a “jump box”. NAT Traversal also makes deployments easier. You
don’t have to worry about port forwarding or setting up a static IP ahead of
time.

Data channels are really powerful as well in this scenario. They can be con-
figured so that only the latest data is accepted. With TCP you run the risk
of encountering Head-of-line blocking. An old mouse click or keypress could
arrive late, and block the subsequent ones from being accepted. WebRTC’s data
channels are designed to handle this and can be configured to not resend lost
packets. You can also measure the backpressure and make sure that you aren’t
sending more data than your network supports.

WebRTC being available in the browser has been a huge quality of life improve-
ment. You don’t have to download a proprietary client to start the session. More
and more clients are coming with WebRTC bundled, smart TVs are getting full
web browsers now.

File Sharing and Censorship Circumvention

File Sharing and Censorship Circumvention are dramatically different problems.
However, WebRTC solves the same problems for them both. It makes them
both easily available and harder to block.

The first problem that WebRTC solves is getting the client. If you want to join
a file sharing network, you need to download the client. Even if the network
is distributed, you still need to get the client first. In a restricted network the
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download will often be blocked. Even if you can download it, the user may not
be able to install and run the client. WebRTC is available in every web browser
already making it readily available.

The second problem that WebRTC solves is your traffic being blocked. If you
use a protocol that is just for file sharing or censorship circumvention it is much
easier to block it. Since WebRTC is a general purpose protocol, blocking it
would impact everyone. Blocking WebRTC might prevent other users of the
network from joining conference calls.

Internet of Things

Internet of Things (IoT) covers a few different use cases. For many this means
network connected security cameras. Using WebRTC you can stream the video
to another WebRTC peer like your phone or a browser. Another use case is
having devices connect and exchange sensor data. You can have two devices in
your LAN exchange climate, noise or light readings.

WebRTC has a huge privacy advantage here over legacy video stream protocols.
Since WebRTC supports P2P connectivity the camera can send the video directly
to your browser. There is no reason for your video to be sent to a 3rd party
server. Even when video is encrypted, an attacker can make assumptions from
the metadata of the call.

Interoperability is another advantage for the IoT space. WebRTC is available in
lots of different languages; C#, C++, C, Go, Java, Python, Rust and TypeScript.
This means you can use the language that works best for you. You also don’t
have to turn to proprietary protocols or formats to be able to connect your
clients.

Media Protocol Bridging

You have existing hardware and software that is producing video, but you can’t
upgrade it yet. Expecting users to download a proprietary client to watch videos
is frustrating. The answer is to run a WebRTC bridge. The bridge translates
between the two protocols so users can use the browser with your legacy setup.

Many of the formats that developers bridge with use the same protocols as
WebRTC. SIP is commonly exposed via WebRTC and allows users to make phone
calls from their browser. RTSP is used in lots of legacy security cameras. They
both use the same underlying protocols (RTP and SDP) so it is computationally
cheap to run. The bridge is just required to add or remove things that are
WebRTC specific.

Data Protocol Bridging

A web browser is only able to speak a constrained set of protocols. You can use
HTTP, WebSockets, WebRTC and QUIC. If you want to connect to anything
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else, you need to use a protocol bridge. A protocol bridge is a server that converts
foreign traffic into something the browser can access. A popular example is using
SSH from your browser to access a server. WebRTC’s data channels have two
advantages over the competition.

WebRTC’s data channels allow unreliable and unordered delivery. In cases where
low latency is critical this is needed. You don’t want new data to be blocked
by old data, this is known as head-of-line blocking. Imagine you are playing a
multiplayer First-person shooter. Do you really care where the player was two
seconds ago? If that data didn’t arrive in time, it doesn’t make sense to keep
trying to send it. Unreliable and unordered delivery allows you to use the data
as soon as it arrives.

Data channels also provide feedback pressure. This tells you if you are sending
data faster than your connection can support. You then have two choices when
this happens. The data channel can either be configured to buffer and deliver
the data late, or you can drop the data that hasn’t arrived in real-time.

Teleoperation

Teleoperation is the act of controlling a device remotely via WebRTC data
channels, and sending the video back via RTP. Developers are driving cars
remotely via WebRTC today! This is used to control robots at construction sites
and deliver packages. Using WebRTC for these problems makes sense for two
reasons.

The ubiquity of WebRTC makes it easy to give users control. All the user needs
is a web browser and an input device. Browsers even support taking input from
joysticks and gamepads. WebRTC completely removes the need to install an
additional client on the user’s device.

Distributed CDN

Distributed CDNs are a subset of file sharing. The files being distributed are
configured by the CDN operator instead. When users join the CDN network
they can download and share the allowed files. Users get all the same benefits
as file sharing.

These CDNs work great when you are at an office with poor external connectivity,
but great LAN connectivity. You can have one user download a video, and then
share it with everyone else. Since everyone isn’t attempting to fetch the same
file via the external network, the transfer will complete faster.

WebRTC Topologies
WebRTC is a protocol for connecting two agents, so how are developers connecting
hundreds of people at once? There are a few different ways you can do it, and
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they all have pros and cons. These solutions broadly fall into two categories;
Peer-to-Peer or Client/Server. WebRTC’s flexibility allows us to create both.

One-To-One

One-to-One is the first connection type you will use with WebRTC. You connect
two WebRTC Agents directly and they can send bi-directional media and data.
The connection looks like this.

Figure 15: One-to-One

Full Mesh

Full mesh is the answer if you want to build a conference call or a multiplayer
game. In this topology each user establishes a connection with every other user
directly. This allows you to build your application, but it comes with some
downsides.

In a Full Mesh topology each user is connected directly. That means you have
to encode and upload video independently for each member of the call. The
network conditions between each connection will be different, so you can’t reuse
the same video. Error handling is also difficult in these deployments. You need
to carefully consider if you have lost complete connectivity, or just connectivity
with one remote peer.

Because of these concerns, a Full Mesh is best used for small groups. For anything
larger a client/server topology is best.

Figure 16: Full mesh

Hybrid Mesh

Hybrid Mesh is an alternative to Full Mesh that can alleviate some of the Full
Mesh’s issues. In a Hybrid Mesh connections aren’t established between every
user. Instead, media is relayed through peers in the network. This means that
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the creator of the media doesn’t have to use as much bandwidth to distribute
media.

This does have some downsides. In this set up, the original creator of the media
has no idea who its video is being sent to, nor if it arrived successfully. You also
will have an increase in latency with every hop in your Hybrid Mesh network.

Figure 17: Hybrid mesh

Selective Forwarding Unit

An SFU (Selective Forwarding Unit) also solves the issues of Full Mesh, but in
an entirely different way. An SFU implements a client/server topology, instead
of P2P. Each WebRTC peer connects to the SFU and uploads its media. The
SFU then forwards this media out to each connected client.

With an SFU each WebRTC Agent only has to encode and upload their video
once. The burden of distributing it to all the viewers is on the SFU. Connectivity
with an SFU is much easier than P2P as well. You can run an SFU on a world
routable address, making it much easier for clients to connect. You don’t need
to worry about NAT Mappings. You do still need to make sure your SFU is
available via TCP (either via ICE-TCP or TURN).

Building a simple SFU can be done in a weekend. Building a good SFU that
can handle all types of clients is never ending. Tuning the Congestion Control,
Error Correction and Performance is a never ending task.

Figure 18: Selective Forwarding Unit
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MCU

A MCU (Multi-point Conferencing Unit) is a client/server topology like an SFU,
but composites the output streams. Instead of distributing the outbound media
unmodified it re-encodes them as one feed.

Figure 19: Multi-point Conferencing Unit

Debugging
Debugging WebRTC can be a daunting task. There are a lot of moving parts,
and they all can break independently. If you aren’t careful, you can lose weeks
of time looking at the wrong things. When you do finally find the part that is
broken, you will need to learn a bit to understand why.

This chapter will get you in the mindset to debug WebRTC. It will show you
how to break down the problem. After we know the problem, we will give a
quick tour of the popular debugging tools.

Isolate The Problem
When debugging, you need to isolate where the issue is coming from. Start from
the beginning of the. . .

Signaling Failure

Networking Failure

Test your STUN server using netcat:

1. Prepare the 20-byte binding request packet:

echo -ne "\x00\x01\x00\x00\x21\x12\xA4\x42TESTTESTTEST" | hexdump -C
00000000 00 01 00 00 21 12 a4 42 54 45 53 54 54 45 53 54 |....!..BTESTTEST|
00000010 54 45 53 54 |TEST|
00000014

Interpretation:

• 00 01 is the message type.
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• 00 00 is the length of the data section.
• 21 12 a4 42 is the magic cookie.
• and 54 45 53 54 54 45 53 54 54 45 53 54 (Decodes to ASCII:

TESTTESTTEST) is the 12-byte transaction ID.

2. Send the request and wait for the 32 byte response:

stunserver=stun1.l.google.com;stunport=19302;listenport=20000;echo -ne "\x00\x01\x00\x00\x21\x12\xA4\x42TESTTESTTEST" | nc -u -p $listenport $stunserver $stunport -w 1 | hexdump -C
00000000 01 01 00 0c 21 12 a4 42 54 45 53 54 54 45 53 54 |....!..BTESTTEST|
00000010 54 45 53 54 00 20 00 08 00 01 6f 32 7f 36 de 89 |TEST. ....o2.6..|
00000020

Interpretation:

• 01 01 is the message type
• 00 0c is the length of the data section which decodes to 12 in decimal
• 21 12 a4 42 is the magic cookie
• and 54 45 53 54 54 45 53 54 54 45 53 54 (Decodes to ASCII:

TESTTESTTEST) is the 12-byte transaction ID.
• 00 20 00 08 00 01 6f 32 7f 36 de 89 is the 12-byte data, inter-

pretation:
– 00 20 is the type: XOR-MAPPED-ADDRESS
– 00 08 is the length of the value section which decodes to 8 in

decimal
– 00 01 6f 32 7f 36 de 89 is the data value, interpretation:

∗ 00 01 is the address type (IPv4)
∗ 6f 32 is the XOR-mapped port
∗ 7f 36 de 89 is the XOR-mapped IP address

Decoding the XOR-mapped section is cumbersome, but we can trick the stun
server to perform a dummy XOR-mapping, by supplying an (invalid) dummy
magic cookie set to 00 00 00 00:

stunserver=stun1.l.google.com;stunport=19302;listenport=20000;echo -ne "\x00\x01\x00\x00\x00\x00\x00\x00TESTTESTTEST" | nc -u -p $listenport $stunserver $stunport -w 1 | hexdump -C
00000000 01 01 00 0c 00 00 00 00 54 45 53 54 54 45 53 54 |........TESTTEST|
00000010 54 45 53 54 00 01 00 08 00 01 4e 20 5e 24 7a cb |TEST......N ^$z.|
00000020

XOR-ing against the dummy magic cookie is idempotent, so the port and address
will be in clear in the response. This will not work in all situations, because
some routers manipulate the passing packets, cheating on the IP address. If we
look at the returned data value (last eight bytes):

• 00 01 4e 20 5e 24 7a cb is the data value, interpretation:
– 00 01 is the address type (IPv4)
– 4e 20 is the mapped port, which decodes to 20000 in decimal
– 5e 24 7a cb is the IP address, which decodes to 94.36.122.203 in

dotted-decimal notation.
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Security Failure

Media Failure

Data Failure

Tools of the trade
netcat (nc)

netcat is command-line networking utility for reading from and writing to network
connections using TCP or UDP. It is typically available as the nc command.

tcpdump

tcpdump is a command-line data-network packet analyzer.

Common commands: - Capture UDP packets to and from port 19302, print a
hexdump of the packet content:

`sudo tcpdump 'udp port 19302' -xx`

• Same, but save packets in a PCAP (packet capture) file for later inspection:

sudo tcpdump 'udp port 19302' -w stun.pcap

The PCAP file can be opened with the Wireshark application: wireshark
stun.pcap

Wireshark

Wireshark is a widely-used network protocol analyzer.

WebRTC browser tools

Browsers come with built-in tools that you can use to inspect the connections you
make. Chrome has chrome://webrtc-internals and chrome://webrtc-logs.
Firefox has about:webrtc.

Latency
How do you know you have high latency? You may have noticed that your video
is lagging, but do you know precisely how much it is lagging? To be able to
reduce this latency, you have to start by measuring it first.

True latency is supposed to be measured end-to-end. That means not just
the latency of the network path between the sender and the receiver, but the
combined latency of camera capture, frame encoding, transmission, receiving,
decoding and displaying, as well as possible queueing between any of these steps.

End-to-end latency is not a simple sum of latencies of each component.

78

https://en.wikipedia.org/wiki/Netcat
https://en.wikipedia.org/wiki/Tcpdump
https://www.wireshark.org
chrome://webrtc-internals
chrome://webrtc-logs
about:webrtc


While you could theoretically measure the latency of the components of a live
video transmission pipeline separately and then add them together, in practice, at
least some components will be either inaccessible for instrumentation, or produce
significantly different results when measured outside the pipeline. Variable queue
depths between pipeline stages, network topology and camera exposure changes
are just a few examples of components affecting end-to-end latency.

The intrinsic latency of each component in your live-streaming system can change
and affect downstream components. Even the content of captured video affects
latency. For example, many more bits are required for high frequency features
such as tree branches, compared to a low frequency clear blue sky. A camera with
auto exposure turned on may take much longer than the expected 33 milliseconds
to capture a frame, even if when the capture rate is set to 30 frames per second.
Transmission over the network, especially so cellular, is also very dynamic due to
changing demand. More users introduce more chatter on the air. Your physical
location (notorious low signal zones) and multiple other factors increase packet
loss and latency. What happens when you send a packet to a network interface,
say WiFi adapter or an LTE modem for delivery? If it can not be immediately
delivered it is queued on the interface, the larger the queue the more latency
such network interface introduces.

Manual end-to-end latency measurement

When we talk about end-to-end latency, we mean the time between an event
happening and it being observed, meaning video frames appearing on the screen.

EndToEndLatency = T(observe) - T(happen)

A naive approach is to record the time when an event happens and subtract it
from the time at observation. However, as precision goes down to milliseconds
time synchronization becomes an issue. Trying to synchronize clocks across
distributed systems is mostly futile, even a small error in time sync produces
unreliable latency measurement.

A simple workaround for clock sync issues is to use the same clock. Put sender
and receiver in the same frame of reference.

Imagine you have a ticking millisecond clock or any other event source really.
You want to measure latency in a system that live streams the clock to a remote
screen by pointing a camera at it. An obvious way to measure time between
the millisecond timer ticking (Thappen) and video frames of the clock appear
on screen (Tobserve) is the following: - Point your camera at the millisecond
clock. - Send video frames to a receiver that is in the same physical location. -
Take a picture (use your phone) of the millisecond timer and the received video
on screen. - Subtract two times.

That is the most true-to-yourself end-to-end latency measurement. It accounts
for all components latencies (camera, encoder, network, decoder) and does not
rely on any clock synchronization.
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.

In the photo above measured end-to-end latency is 101 msec. Event happen-
ing right now is 10:16:02.862, but the live-streaming system observer sees
10:16:02.761.
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Automatic end-to-end latency measurement

As of the time of writing (May 2021) the WebRTC standard for end-to-end delay
is being actively discussed. Firefox implemented a set of APIs to let users create
automatic latency measurement on top of standard WebRTC APIs. However in
this paragraph, we discuss the most compatible way to automatically measure
latency.

Figure 20: NTP Style Latency Measurement

Roundtrip time in a nutshell: I send you my time tR1, when I receive back my
tR1 at time tR2, I know round trip time is tR2 - tR1.

Given a communication channel between sender and receiver (e.g. DataChannel),
the receiver may model the sender’s monotonic clock by following the steps
below: 1. At time tR1, the receiver sends a message with its local monotonic
clock timestamp. 2. When it is received at the sender with local time tS1, the
sender responds with a copy of tR1 as well as the sender’s tS1 and the sender’s
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video track time tSV1. 3. At time tR2 on the receiving end, round trip time
is calculated by subtracting the message’s send and receive times: RTT = tR2
- tR1. 4. Round trip time RTT together with sender local timestamp tS1 is
enough to create an estimation of the sender’s monotonic clock. Current time
on the sender at time tR2 would be equal to tS1 plus half of round trip time.
5. Sender’s local clock timestamp tS1 paired with video track timestamp tSV1
together with round trip time RTT is therefore enough to sync receiver video
track time to the sender video track.

Now that we know how much time has passed since the last known sender video
frame time tSV1, we can approximate the latency by subtracting the currently
displayed video frame’s time (actual_video_time) from the expected time:

expected_video_time = tSV1 + time_since(tSV1)
latency = expected_video_time - actual_video_time

This method’s drawback is that it does not include the camera’s intrinsic latency.
Most video systems consider the frame capture timestamp to be the time when
the frame from the camera is delivered to the main memory, which will be a few
moments after the event being recorded actually happened.

Example latency estimation A sample implementation opens a latency
data channel on the receiver and periodically sends the receiver’s monotonic
timer timestamps to the sender. The sender responds back with a JSON message
and the receiver calculates the latency based the message.

{
"received_time": 64714, // Timestamp sent by receiver, sender reflects the timestamp.
"delay_since_received": 46, // Time elapsed since last `received_time` received on sender.
"local_clock": 1597366470336, // The sender's current monotonic clock time.
"track_times_msec": {

"myvideo_track1": [
13100, // Video frame RTP timestamp (in milliseconds).
1597366470289 // Video frame monotonic clock timestamp.

]
}

}

Open the data channel on the receiver:

dataChannel = peerConnection.createDataChannel('latency');

Send the receiver’s time tR1 periodically. This example uses 2 seconds for no
particular reason:

setInterval(() => {
let tR1 = Math.trunc(performance.now());
dataChannel.send("" + tR1);

}, 2000);
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Handle incoming message from receiver on sender:

// Assuming event.data is a string like "1234567".
tR1 = event.data
now = Math.trunc(performance.now());
tSV1 = 42000; // Current frame RTP timestamp converted to millisecond timescale.
tS1 = 1597366470289; // Current frame monotonic clock timestamp.
msg = {

"received_time": tR1,
"delay_since_received": 0,
"local_clock": now,
"track_times_msec": {

"myvideo_track1": [tSV1, tS1]
}

}
dataChannel.send(JSON.stringify(msg));

Handle incoming message from the sender and print the estimated latency to
the console:

let tR2 = performance.now();
let fromSender = JSON.parse(event.data);
let tR1 = fromSender['received_time'];
let delay = fromSender['delay_since_received']; // How much time that has passed between the sender receiving and sending the response.
let senderTimeFromResponse = fromSender['local_clock'];
let rtt = tR2 - delay - tR1;
let networkLatency = rtt / 2;
let senderTime = (senderTimeFromResponse + delay + networkLatency);
VIDEO.requestVideoFrameCallback((now, framemeta) => {

// Estimate current time of the sender.
let delaySinceVideoCallbackRequested = now - tR2;
senderTime += delaySinceVideoCallbackRequested;
let [tSV1, tS1] = Object.entries(fromSender['track_times_msec'])[0][1]
let timeSinceLastKnownFrame = senderTime - tS1;
let expectedVideoTimeMsec = tSV1 + timeSinceLastKnownFrame;
let actualVideoTimeMsec = Math.trunc(framemeta.rtpTimestamp / 90); // Convert RTP timebase (90000) to millisecond timebase.
let latency = expectedVideoTimeMsec - actualVideoTimeMsec;
console.log('latency', latency, 'msec');

});

Actual video time in browser

<video>.requestVideoFrameCallback() allows web authors to be
notified when a frame has been presented for composition.

Until very recently (May 2020), it was next to impossible to reliably get a
timestamp of the currently displayed video frame in browsers. Workaround
methods based on video.currentTime existed, but were not particularly precise.
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Both the Chrome and Mozilla browser developers supported the introduction
of a new W3C standard, HTMLVideoElement.requestVideoFrameCallback(),
that adds an API callback to access the current video frame time. While the
addition sounds trivial, it has enabled multiple advanced media applications on
the web that require audio and video synchronization. Specifically for WebRTC,
the callback will include the rtpTimestamp field, the RTP timestamp associated
with the current video frame. This should be present for WebRTC applications,
but absent otherwise.

Latency Debugging Tips

Since debugging is likely to affect the measured latency, the general rule is to
simplify your setup to the smallest possible one that can still reproduce the issue.
The more components you can remove, the easier it will be to figure out which
component is causing the latency problem.

Camera latency Depending on camera settings camera latency may vary.
Check auto exposure, auto focus and auto white balance settings. All the “auto”
features of web cameras take some extra time to analyse the captured image
before making it available to the WebRTC stack.

If you are on Linux, you can use the v4l2-ctl command line tool to control
camera settings:

# Disable autofocus:
v4l2-ctl -d /dev/video0 -c focus_auto=0
# Set focus to infinity:
v4l2-ctl -d /dev/video0 -c focus_absolute=0

You can also use the graphical UI tool guvcview to quickly check and tweak
camera settings.

Encoder latency Most modern encoders will buffer some frames before out-
putting an encoded one. Their first priority is a balance between the quality of
the produced picture and bitrate. Multipass encoding is an extreme example of
an encoder’s disregard for output latency. During the first pass encoder ingests
the entire video and only after that starts outputting frames.

However, with proper tuning people have achieved sub-frame latencies. Make
sure your encoder does not use excessive reference frames or rely on B-frames.
Every codec’s latency tuning settings are different, but for x264 we recommend
using tune=zerolatency and profile=baseline for the lowest frame output
latency.

Network latency Network latency is the one you can arguably do least about,
other than upgrading to a better network connection. Network latency is very
much like the weather - you can’t stop the rain, but you can check the forecast
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and take an umbrella. WebRTC is measuring network conditions with millisecond
precision. Important metrics are: - Round-trip time. - Packet loss and packet
retransmissions.

Round-Trip Time

The WebRTC stack has a built-in network round trip time (RTT) measurement
mechanism. A good-enough approximation of latency is half of the RTT. It
assumes that it takes the same time to send and receive a packet, which is not
always the case. RTT sets the lower bound on the end-to-end latency. Your video
frames can not reach the receiver faster than RTT/2, no matter how optimized
your camera to encoder pipeline is.

The built-in RTT mechanism is based on special RTCP packets called
sender/receiver reports. Sender sends its time reading to receiver, the receiver in
turn reflects the same timestamp to the sender. Thereby the sender knows how
much time it took for the packet to travel to the receiver and return back. Refer
to Sender/Receiver Reports chapter for more details of RTT measurement.

Packet loss and packet retransmissions

Both RTP and RTCP are protocols based on UDP, which does not have any
guarantee of ordering, successful delivery, or non-duplication. All of the above
can and does happen in real world WebRTC applications. An unsophisticated
decoder implementation expects all packets of a frame to be delivered for the
decoder to successfully reassemble the image. In presence of packet loss decoding
artifacts may appear if packets of a P-frame are lost. If I-frame packets are
lost then all of its dependent frames will either get heavy artifacts or won’t be
decoded at all. Most likely this will make the video “freeze” for a moment.

To avoid (well, at least to try to avoid) video freezing or decoding artifacts,
WebRTC uses negative acknowledgement messages (NACK). When the receiver
does not get an expected RTP packet, it returns a NACK message to tell the
sender to send the missing packet again. The receiver waits for the retransmission
of the packet. Such retransmissions cause increased latency. The number of
NACK packets sent and received is recorded in WebRTC’s built-in stats fields
outbound stream nackCount and inbound stream nackCount.

You can see nice graphs of inbound and outbound nackCount on the webrtc
internals page. If you see the nackCount increasing, it means the network is
experiencing high packet loss, and the WebRTC stack is doing its best to create
a smooth video/audio experience despite that.

When packet loss is so high that the decoder is unable to produce an image, or
subsequent dependent images like in the case of a fully lost I-frame, all future
P-frames will not be decoded. The receiver will try to mitigate that by sending a
special Picture Loss Indication message (PLI). Once the sender receives a PLI, it
will produce a new I-frame to help the receiver’s decoder. I-frames are normally
larger in size than P-frames. This increases the number of packets that need to
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be transmitted. Like with NACK messages, the receiver will need to wait for
the new I-frame, introducing additional latency.

Watch for pliCount on the webrtc internals page. If it increases, tweak your
encoder to produce less packets or enable a more error resilient mode.

Receiver side latency Latency will be affected by packets arriving out of
order. If the bottom half of the image packet comes before the top you would
have to wait for the top before decoding. This is explained in the Solving Jitter
chapter in great detail.

You can also refer to the built-in jitterBufferDelay metric to see how long a
frame was held in the receive buffer, waiting for all of its packets until it was
released to the decoder.

History
When learning WebRTC developers often feel frustrated by the complexity. They
see WebRTC features irrelevant to their current project and wish WebRTC was
simpler. The issue is that everyone has a different set of use cases. Real-time
communications has a rich history with lots of different people building many
different things.

This chapter contains interviews with the authors of the protocols that make up
WebRTC. It gives insight into the designs made when building each protocol,
and finishes with an interview about WebRTC itself. If you understand the
intentions and designs of the software you can build more effective systems with
it.

RTP
RTP and RTCP is the protocol that handles all media transport for WebRTC.
It was defined in RFC 1889 in January 1996. We are very lucky to have one of
the authors Ron Frederick talk about it himself. Ron recently uploaded Network
Video tool to GitHub, a project that informed RTP.

In his own words

In October of 1992, I began to experiment with the Sun VideoPix frame grabber
card, with the idea of writing a network videoconferencing tool based upon IP
multicast. It was modeled after “vat” – an audioconferencing tool developed
at LBL, in that it used a similar lightweight session protocol for users joining
into conferences, where you simply sent data to a particular multicast group and
watched that group for any traffic from other group members.

In order for the program to really be successful, it needed to compress the video
data before putting it out on the network. My goal was to make an acceptable
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looking stream of data that would fit in about 128 kbps, or the bandwidth
available on a standard home ISDN line. I also hoped to produce something
that was still watchable that fit in half this bandwidth. This meant I needed
approximately a factor of 20 in compression for the particular image size and
frame rate I was working with. I was able to achieve this compression and filed
for a patent on the techniques I used, later granted as patent US5485212A:
Software video compression for teleconferencing.

In early November of 1992, I released the videoconferencing tool “nv” (in binary
form) to the Internet community. After some initial testing, it was used to
videocast parts of the November Internet Engineering Task Force all around the
world. Approximately 200 subnets in 15 countries were capable of receiving this
broadcast, and approximately 50-100 people received video using “nv” at some
point in the week.

Over the next couple of months, three other workshops and some smaller meet-
ings used “nv” to broadcast to the Internet at large, including the Australian
NetWorkshop, the MCNC Packet Audio and Video workshop, and the MultiG
workshop on distributed virtual realities in Sweden.

A source code release of “nv” followed in February of 1993, and in March I
released a version of the tool where I introduced a new wavelet-based compression
scheme. In May of 1993, I added support for color video.

The network protocol used for “nv” and other Internet conferencing tools became
the basis of the Realtime Transport Protocol (RTP), standardized through the
Internet Engineering Task Force (IETF), first published in RFCs 1889-1890 and
later revised in RFCs 3550-3551 along with various other RFCs that covered
profiles for carrying specific formats of audio and video.

Over the next couple of years, work continued on “nv”, porting the tool to a
number of additional hardware platforms and video capture devices. It continued
to be used as one of the primary tools for broadcasting conferences on the Internet
at the time, including being selected by NASA to broadcast live coverage of
shuttle missions online.

In 1994, I added support in “nv” for supporting video compression algorithms
developed by others, including some hardware compression schemes such as the
CellB format supported by the SunVideo video capture card. This also allowed
“nv” to send video in CUSeeMe format, to send video to users running CUSeeMe
on Macs and PCs.

The last publicly released version of “nv” was version 3.3beta, released in July of
1994. I was working on a “4.0alpha” release that was intended to migrate “nv”
over to version 2 of the RTP protocol, but this work was never completed due
to my moving on to other projects. A copy of the 4.0 alpha code is included in
the Network Video tool archive for completeness, but it is unfinished and there
are known issues with it, particularly in the incomplete RTPv2 support.

The framework provided in “nv” later went on to become the basis of video
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conferencing in the “Jupiter multi-media MOO” project at Xerox PARC, which
eventually became the basis for a spin-off company “PlaceWare”, later acquired
by Microsoft. It was also used as the basis for a number of hardware video
conferencing projects that allowed sending of full NTSC broadcast quality video
over high-bandwidth Ethernet and ATM networks. I also later used some of this
code as the basis for “Mediastore”, which was a network-based video recording
and playback service.

Do you remember the motivations/ideas of the other people on the
draft?

We were all researchers working on IP multicast, and helping to create the
Internet multicast backbone (aka MBONE). The MBONE was created by Steve
Deering (who first developed IP multicast), Van Jacobson, and Steve Casner.
Steve Deering and I had the same advisor at Stanford, and Steve ended up
going to work at Xerox PARC when he left Stanford, I spent a summer at Xerox
PARC as an intern working on IP multicast-related projects and continued to
work for them part time while at Stanford and later full time. Van Jacobson
and Steve Casner were two of the four authors on the initial RTP RFCs, along
with Henning Schulzrinne and myself. We all had MBONE tools that we were
working on that allowed for various forms of online collaboration, and trying to
come up with a common base protocol all these tools could use was what led to
RTP.

Multicast is super fascinating. WebRTC is entirely unicast, mind
expanding on that?

Before getting to Stanford and learning about IP multicast, I had a long history
working on ways to use computers as a way for people to communicate with one
another. This started in the early 80s for me where I ran a dial-up bulletin board
system where people could log on and leave messages for one another, both
private (sort of the equivalent of e-mail) and public (discussion groups). Around
the same time, I also learned about the online service provider CompuServe.
One of the cool features on CompuServe was something called a “CB Simulator”
where people could talk to one another in real-time. It was all text-based, but it
had a notion of “channels” like a real CB radio, and multiple people could see
what others typed, as long as they were in the same channel. I built my own
version of CB which ran on a timesharing system I had access to which let users
on that system send messages to one another in real-time, and over the next few
years I worked with friends to develop more sophisticated versions of real-time
communication tools on several different computer systems and networks. In
fact, one of those systems is still operational, and I use it talk every day to folks
I went to college with 30+ years ago!

All of those tools were text based, since computers at the time generally didn’t
have any audio/video capabilities, but when I got to Stanford and learned about
IP multicast, I was intrigued by the notion of using multicast to get something
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more like a true “radio” where you could send a signal out onto the network
that wasn’t directed at anyone in particular, but everyone who tuned to that
“channel” could receive it. As it happened, the computer I was porting the IP
multicast code to what was the first generation SPARC-station from Sun, and it
actually had built-in telephone-quality audio hardware! You could digitize sound
from a microphone and play it back over built-in speakers (or via a headphone
output). So, my first thought was to figure out how to send that audio out onto
the network in real-time using IP multicast, and see if I could build a “CB radio”
equivalent with actual audio instead of text.

There were some tricky things to work out, like the fact that the computer could
only play one audio stream at a time, so if multiple people were talking you
needed to mathematically “mix” multiple audio streams into one before you
could play it, but that could all be done in software once you understood how
the audio sampling worked. That audio application led me to working on the
MBONE and eventually moving from audio to video with “nv”.

Anything that got left out of the protocol that you wish you had
added? Anything in the protocol you regret?

I wouldn’t say I regret it, but one of the big complaints people ended up having
about RTP was the complexity of implementing RTCP, the control protocol
that ran in parallel with the main RTP data traffic. I think that complexity
was a large part of why RTP wasn’t more widely adopted, particularly in the
unicast case where there wasn’t as much need for some of RTCP’s features. As
network bandwidth became less scarce and congestion wasn’t as big a problem,
a lot of people just ended up streaming audio & video over plain TCP (and later
HTTP), and generally speaking it worked “well enough” that it wasn’t worth
dealing with RTP.

Unfortunately, using TCP or HTTP meant that multi-party audio and video
applications had to send the same data over the network multiple times, to
each of the peers that needed to receive it, making it much less efficient from
a bandwidth perspective. I sometimes wish we had pushed harder to get IP
multicast adopted beyond just the research community. I think we could have
seen the transition from cable and broadcast television to Internet-based audio
and video much sooner if we had.

What things did you imagine being built with RTP? Do have any cool
RTP projects/ideas that got lost to time?

One of the fun things I built was a version of the classic “Spacewar” game which
used IP multicast. Without having any kind of central server, multiple clients
could each run the spacewar binary and start broadcasting their ship’s location,
velocity, the direction it was facing, and similar information for any “bullets”
it had fired, and all of the other instances would pick up that information and
render it locally, allowing users to all see each other’s ships and bullets, with

89



ships “exploding” if they crashed into each other or bullets hit them. I even
made the “debris” from the explosion a live object that could take out other
ships, sometimes leading to fun chain reactions!

In the spirit of the original game, I rendered it using simulated vector graphics, so
you could do things like zooming your view in & out and everything would scale
up/down. The ships themselves were a bunch of line segments in vector form
that I had some of my colleagues at PARC helped me to design, so everyone’s
ship had a unique look to it.

Basically, anything that could benefit from a real-time data stream that didn’t
need perfect in-order delivery could benefit from RTP. So, in addition to audio
& video we could build things like a shared whiteboard. Even file transfers could
benefit from RTP, especially in conjunction with IP multicast.

Imagine something like BitTorrent but where you didn’t need all the data going
point-to-point between peers. The original seeder could send a multicast stream
to all of the leeches at once, and any packet losses along the way could be quickly
cleaned up by a retransmission from any peer that successfully received the data.
You could even scope your retransmission requests so that some peer nearby
delivered the copy of the data, and that too could be multicast to others in that
region, since a packet loss in the middle of the network would tend to mean a
bunch of clients downstream of that point all missed the same data.

Why did you have to roll your own video compression. Was nothing
else available at the time?

At the time I began to build “nv”, the only systems I know of that did video-
conferencing were very expensive specialized hardware. For instance, Steve
Casner had access to a system from BBN that was called “DVC” (and later
commercialized as “PictureWindow”). The compression required specialized
hardware, but the decompression could be done in software. What made “nv”
somewhat unique was that both compression and decompression was being done
in software, with the only hardware requirement being something to digitize an
incoming analog video signal.

Many of the basic concepts about how to compress video existed by then, with
things like the MPEG-1 standard appearing right around the same time “nv”
did, but real-time encoding with MPEG-1 was definitely NOT possible at the
time. The changes I made were all about taking those basic concepts and
approximating them with much cheaper algorithms, where I avoided things like
cosine transforms and floating point, and even avoided integer multiplications
since those were very slow on SPARC-stations. I tried to do everything I could
with just additions/subtractions and bit masking and shifting, and that got back
enough speed to still feel somewhat like video.

Within a year or two of the release of “nv”, there were many different audio
and video tools to choose from, not only on the MBONE but in other places
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like the CU-SeeMe tool built on the Mac. So, it was clearly an idea whose time
had come. I actually ended up making “nv” interoperate with many of these
tools, and in a few cases other tools picked up my “nv” codecs, so they could
interoperate when using my compression scheme.

WebRTC
WebRTC required a standardization effort that dwarfs all of the other efforts
described in this chapter. It required cooperation across two different standards
bodies (IETF and W3C) and hundreds of individuals across many companies
and countries. To give us a look inside the motivations and monumental effort it
took to make WebRTC happen we have Serge Lachapelle.

Serge is a product manager at Google, currently serving as a product manager
for Google Workspace. This is my summary of the interview.

What led you to work on WebRTC?

I have been passionate about building communications software since I was in
college. In the 90s the technology like nv started to appear, but was difficult
to use. I created a project that allowed you to join a video call right from your
browser. I also ported it to Windows.

I took this experience to Marratech, a company I co-founded. We created
software for group video conferencing. Technologically the landscape was so
different. The cutting edge in video was based on multicast networking. A user
could depend on the network to deliver to a video packet to everyone in the call.
This meant that we had very simple servers. This had a big downside though,
networks had to be designed to accommodate it. The industry moved away from
multicast to packet shufflers, more commonly known as SFUs.

Marratech was acquired by Google in 2007. I would then go on to work on the
project that would inform WebRTC.

The first Google project

The first project that the future WebRTC team worked on was Gmail voice
and video chat. Getting audio and video into the browser was no easy task. It
required specialty components that we had to license from different companies.
Audio was licensed from GIPs, video was licensed for Vidyo and the networking
was libjingle. The magic was then making all of them work together.

Each subsystem has completely different APIs, and assumed you were solving
different problems. To make it all work together you need working knowledge
of networking, cryptography, media and more. Justin Uberti was the person
that took on this work. He brought these components together to make a usable
product.
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Rendering real-time in the browser was also really hard. We had to use the
NPAPI (Netscape Plugin API) and do lots of clever things to make it work. The
lessons we learned from this project greatly influenced WebRTC.

Chrome

At the same time the Chrome project started inside of Google. There was so
much excitement, and this project had huge goals. There was talk about WebGL,
Offline, Database capabilities, low latency input for gaming just to name a few.

Moving away from NPAPI became a big focus. It is a powerful API, but comes
with big security consequences. Chrome uses a sandbox design to keep users safe.
Operations that can be potentially unsafe are run in different processes. Even if
something goes wrong an attacker still doesn’t have access to the user data.

WebRTC is born

For me WebRTC was born with a few motivations. Combined they gave birth
to the effort.

It shouldn’t be this hard to build RTC experiences. So much effort is wasted
re-implementing the same thing by different developers. We should solve these
frustrating integration problems once, and focus on other things.

Human communication should be unhampered and should be open. How is it
ok for text and HTML to be open, but my voice and my image in real-time not
to be?

Security is a priority. Using the NPAPI wasn’t best for users. This was also a
chance to make a protocol that was secure by default.

To make WebRTC happen Google acquired and Open Sourced the components
we had used before. On2 was acquired for its video technology and Global IP
Solutions for its RTC technology. I was in charge of the effort of acquiring GIPS.
We got to work combining these and making them easy to use in and outside
the browser.

Standardization

Standardizing WebRTC was something we really wanted to do, but not something
I had done before nor anyone on our immediate team. For this we were really
fortunate to have Harald Alvestrand at Google. He had done extensive work in
the IETF already and started the WebRTC standardization process.

In summer 2010 an informal lunch was scheduled in Maastricht. Developers
from many companies came together to discuss what WebRTC should be. The
lunch had engineers from Google, Cisco, Ericsson, Skype, Mozilla, Linden
Labs and more. You can find the full attendance and presenter slides on rtc-
web.alvestrand.com.
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Skype also provided some great guidance because of the work they had done
with Opus in the IETF.

Standing on the shoulders of giants

When working in the IETF you are extending the work that has come before
you. With WebRTC we were lucky that so many things existed. We didn’t have
to take on every problem because they already were solved. If you don’t like the
pre-existing technology it can be frustrating though. There has to be a pretty
big reason to disregard existing work, so rolling your own isn’t an option.

We also consciously didn’t attempt to re-standardize things like signaling. This
had already been solved with SIP and other non-IETF efforts, and it felt like it
could end up being very political. In the end it just didn’t feel like there was
much value to add to the space.

I didn’t stay as involved in standardization as Justin and Harald, but I enjoyed
my time doing it. I was more excited about returning to building things for
users.

The future

WebRTC is in a great place today. There are lots of iterative changes happening,
but nothing in particular I have been working on.

I am most excited about what cloud computing can do for communication. Using
advanced algorithms we can remove background noise from a call and make
communication possible where it wasn’t before. We are also seeing WebRTC
extend far beyond communications. . . Who knew that it would be powering
cloud based gaming 9 years later? All of this wouldn’t be possible without the
foundation of WebRTC.

FAQ
{{<details “Why does WebRTC use UDP?”>}} NAT Traversal requires UDP.
Without NAT Traversal establishing a P2P connection wouldn’t be possible.
UDP doesn’t provide “guaranteed delivery” like TCP, so WebRTC provides it at
the user level.

See Connecting({{< ref “03-connecting” >}}) for more info. {{

}}

{{<details “How many DataChannels can I have?”>}} 65534 channels as stream
identifier has 16 bits. You can close and open a new one at any time. {{

}}

{{<details “Does WebRTC impose bandwidth limits?”>}} Both DataChannels
and RTP use congestion control. This means that WebRTC actively measures
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your bandwidth and attempts to use the optimal amount. It is a balance between
sending as much as possible, without overwhelming the connection. {{

}}

{{<details “Can I send binary data?”>}} Yes, you can send both text and binary
data via DataChannels. {{

}}

{{<details “What latency can I expect with WebRTC?”>}} For un-tuned media,
you can expect sub-500 milliseconds. If you are willing to tune or sacrifice quality
for latency, developers have gotten sub-100ms latency.

DataChannels support “Partial-reliability” option which can reduce latency
caused by data retransmissions over a lossy connection. If configured properly,
it has been shown to beat TCP TLS connections. {{

}}

{{<details “Why would I want unordered delivery for DataChannels?”>}} When
newer information obsoletes the old such as positional information of an object,
or each message is independent from the others and need to avoid head-of-line
blocking delay. {{

}}

{{<details “Can I send audio or video over a DataChannel?”>}} Yes, you
can send any data over a DataChannel. In the browser case, it will be your
responsibility to decode the data and pass it to a media player for rendering,
while all of that is done automatically if you use media channels. {{

}}

Glossary
• ACK: Acknowledgment
• AVP: Audio and Video profile
• B-Frame: Bi-directional Predicted Frame. A partial picture, is a modifica-

tion of previous and future pictures.
• DCEP: Data Channel Establishment Protocol defined in RFC 8832
• DeMux: Demultiplexer
• DLSR: Delay since last sender report
• DTLS: Datagram Transport Layer Security defined in RFC 6347
• E2E: End-to-End
• FEC: Forward Error Correction
• FIR: Full INTRA-frame Request
• G.711: A narrowband audio codec
• GCC: Google Congestion Control defined in draft-ietf-rmcat-gcc-02
• H.264: Advanced video coding for generic audiovisual services
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• H.265: Conformance specification for ITU-T H.265 high efficiency video
coding

• HEVC: High Efficiency Video Coding
• HTTP: Hypertext Transfer Protocol
• HTTPS: HTTP Over TLS, defined in RFC 2818
• I-Frame: Intra-coded Frame. A complete picture, can be decoded without

anything else.
• ICE: Interactive Connectivity Establishment defined in RFC 8445
• INIT: Initiate
• IoT: Internet of Things
• IPv4: Internet Protocol, Version 4
• IPv6: Internet Protocol, Version 6
• ITU-T: International Telecommunication Union Telecommunication Stan-

dardization Sector
• JSEP: JavaScript Session Establishment Protocol defined in RFC 8829
• MCU: Multi-point Conferencing Unit
• mDNS: Multicast DNS defined in RFC 6762
• MITM: Man-In-The-Middle
• MTU: Maximum Transmission Unit, the packet size
• MUX: Multiplexing
• NACK: Negative Acknowledgment
• NADA: network-assisted dynamic adaptation define in draft-zhu-rmcat-

nada-04
• NAT: Network Address Translation defined in RFC 4787
• Opus: A totally open, royalty-free, highly versatile audio codec
• P-Frame: Predicted Frame. A partial picture, containing only changes

from the previous picture.
• P2P: Peer-to-Peer
• PLI: Picture Loss Indication
• PPID: Payload Protocol Identifier
• REMB: Receiver Estimated Maximum Bitrate
• RFC: Request for Comments
• RMCAT: RTP Media Congestion Avoidance Techniques
• RR: Receiver Report
• RTCP: RTP Control Protocol defined in RFC 3550
• RTP: Real-time transport protocol defined in RFC 3550
• RTT: Round-Trip Time
• SACK: Selective Acknowledgment
• SCReAM: Self-Clocked Rate Adaptation for Multimedia defined in draft-

johansson-rmcat-scream-cc-05
• SCTP: Stream Control Transmission Protocol defined in RFC 4960
• SDP: Session Description Protocol defined in RFC 8866
• SFU: Selective Forwarding Unit
• SR: Sender Report
• SRTP: Secure Real-time Transport Protocol defined in RFC 3711
• SSRC: Synchronization Source
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• STUN: Session Traversal Utilities for NAT defined in RFC 8489
• TCP: Transmission Control Protocol
• TLS: The Transport Layer Security defined in RFC 8446
• TMMBN: Temporary Maximum Media Stream Bit Rate Notification
• TMMBR: Temporary Maximum Media Stream Bit Rate Request
• TSN: Transmission Sequence Number
• TURN: Traversal Using Relays around NAT defined in RFC 8656
• TWCC: Transport Wide Congestion Control
• UDP: User Datagram Protocol
• VP8, VP9: Highly-efficient video compression technologies (video “codecs”)

developed by the WebM Project. Anyone may use these codecs royalty-free.
• WebM: An open media file format designed for the web.
• WebRTC: Web Real-Time Communications. W3C WebRTC 1.0: Real-

Time Communication Between Browsers
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